Distance Computation Between Extended Quadratic Complexes

Christian Lennerz

June 17, 2002

Max-Planck-Institut für Informatik

Conics, Quadrics and Quadratic Complexes

• Quadratic Complexes are polyhedra with faces embedded on quadrics and conics as edges.

Conics, Quadrics and Quadratic Complexes

- Quadratic Complexes are polyhedra with faces embedded on quadrics and conics as edges.
- A quadric is given by an algebraic equation of degree 2:

$$\{\mathbf{x} \in \mathbb{R}^3 | \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_0 = \mathbf{0}\},\$$

for a vector $\mathbf{a} \in \mathbb{R}^3$ and symmetric matrix $\mathbf{A} \in \mathbb{R}^{3 \times 3}$.

Conics, Quadrics and Quadratic Complexes

- Quadratic Complexes are polyhedra with faces embedded on quadrics and conics as edges.
- A quadric is given by an algebraic equation of degree 2:

 $\{\mathbf{x} \in \mathbb{R}^3 | \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_0 = \mathbf{0}\},\$

for a vector $\mathbf{a} \in \mathbb{R}^3$ and symmetric matrix $\mathbf{A} \in \mathbb{R}^{3 \times 3}$.

• A conic is explicitly given as the following point set:

$$\{\mathbf{p}\in\mathbb{R}^3\,|\,\mathbf{p}\ =\ \mathbf{c}+\mathbf{r}(\mathbf{t})\mathbf{u}+\mathbf{s}(\mathbf{t})\mathbf{v}\},$$

where $(r, s) \in \{(\cos, \sin), (\cosh, \sinh), (id, id^2), (id, 0)\}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ with $\mathbf{u}^T \mathbf{v} = 0$.

Examples of Quadrics

Examples of Quadrics

Examples of Quadratic Complexes in CAD

Examples of Quadratic Complexes in CAD

Examples of Quadratic Complexes in CAD

Some Limitations

• Typical CAD-operations on circular profile curves lead to torus patches:

Revolving


```
Tubing
```

Some Limitations

• Typical CAD-operations on circular profile curves lead to torus patches:

Revolving

• The class of quadratic complexes is not closed under BOOLEANoperations:

Due to these limitations one has to think about extending the class of quadratic complexes:

Due to these limitations one has to think about extending the class of quadratic complexes:

• Geometrical embedding of faces on torus surfaces,

Due to these limitations one has to think about extending the class of quadratic complexes:

- Geometrical embedding of faces on torus surfaces,
- Approximation of non-conic intersection curves by
 - conic arcs or
 - nurbs curves,

Due to these limitations one has to think about extending the class of quadratic complexes:

- Geometrical embedding of faces on torus surfaces,
- Approximation of non-conic intersection curves by
 - conic arcs or
 - nurbs curves,
- Representation of non-conic intersection curves by their exact parameterization.

Classification of Quadrics by Normal Forms

From the implicit representation of a general quadric, we can derive the following normal forms by applying coordinate transformations:

Central Su	rfaces: $det(\mathbf{A}) \neq 0$
Ellipsoid / Hyperboloids	$a = 0$ $a_0 \neq 0$
Cone	$a = 0$ $a_0 = 0$

Non-Central Surfaces: $det(\mathbf{A}) = 0$				
Paraboloids	$A_3 = 0$	$a_3 \neq 0$	$a_0 = 0$	
Elliptic /Hyperbolic Cylinder	$A_3 = 0$	$\mathfrak{a} = \mathfrak{0}$	$a_0 \neq 0$	
Parabolic Cylinder	$A_1 = A_3 = 0$	$a_1 \neq 0$	$a_0 = 0$	

Examples of Quadrics in Normal Form

Central Surfaces:

Example 1 (Ellipsoid) An ellipsoid in normal form is given as:

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{a}_0 = 0$$
, with $\mathbf{A} = \begin{bmatrix} 1/r_1^2 & 0 & 0\\ 0 & 1/r_2^2 & 0\\ 0 & 0 & 1/r_3^2 \end{bmatrix}$, $\mathbf{a}_0 = -1$.

Examples of Quadrics in Normal Form

Central Surfaces:

Example 1 (Ellipsoid) An ellipsoid in normal form is given as:

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{a}_0 = 0, \quad \text{with } \mathbf{A} = \begin{bmatrix} 1/r_1^2 & 0 & 0\\ 0 & 1/r_2^2 & 0\\ 0 & 0 & 1/r_3^2 \end{bmatrix}, \ \mathbf{a}_0 = -1.$$

Non-Central Surfaces:

Example 2 (Elliptic Cylinder) An elliptic cylinder in normal form is given as:

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{a}_0 = 0$$
, with $\mathbf{A} = \begin{bmatrix} 1/r_1^2 & 0 & 0\\ 0 & 1/r_2^2 & 0\\ 0 & 0 & 0 \end{bmatrix}$, $\mathbf{a}_0 = -1$.

The Distance Computation Problem

Definition 1 (Distance Computation Problem)

Given two quadratic complexes C_1 , C_2 . The distance computation problem is to determine the global minimum of the distance function δ between the respective point sets, together with a pair of witness points i.e.

- (i) the value $\delta^* := \delta(\mathbf{C}_1, \mathbf{C}_2)$,
- (ii) a pair of points (\mathbf{p}, \mathbf{q}) , s.t. $\delta^* = \delta(\mathbf{p}, \mathbf{q})$,

where δ denotes the (quadratic) EUCLIDEAN distance function between two points or set of points, respectively.

Closest Points Between Faces

Let f_1 and f_2 be disjoint faces of quadratic complexes that are embedded on the quadratic surfaces Q_1 and Q_2 , where

$$Q_1 := \{ \mathbf{x} | \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} + 2\mathbf{a}^\mathsf{T} \mathbf{x} + \mathbf{a}_0 = \mathbf{0} \},$$

$$Q_2 := \{ \mathbf{y} | \mathbf{y}^\mathsf{T} \mathbf{B} \mathbf{y} + 2\mathbf{b}^\mathsf{T} \mathbf{y} + \mathbf{b}_0 = \mathbf{0} \}.$$

If $(\mathbf{p}_1, \mathbf{p}_2)$ is a pair of closest points between f_1 and f_2 , then either

Closest Points Between Faces

Let f_1 and f_2 be disjoint faces of quadratic complexes that are embedded on the quadratic surfaces Q_1 and Q_2 , where

$$Q_1 := \{ \mathbf{x} | \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} + 2\mathbf{a}^\mathsf{T} \mathbf{x} + \mathbf{a}_0 = \mathbf{0} \},$$

$$Q_2 := \{ \mathbf{y} | \mathbf{y}^\mathsf{T} \mathbf{B} \mathbf{y} + 2\mathbf{b}^\mathsf{T} \mathbf{y} + \mathbf{b}_0 = \mathbf{0} \}.$$

If $(\mathbf{p}_1, \mathbf{p}_2)$ is a pair of closest points between f_1 and f_2 , then either

(i) $(\mathbf{p}_1, \mathbf{p}_2)$ is an extremum of the distance function between Q_1 and Q_2 , i.e. there are $\alpha, \beta \in \mathbb{R}, \ \alpha, \beta \neq 0$ s.t.

$$\mathbf{n}(\mathbf{p}_1) = \alpha(\mathbf{p}_2 - \mathbf{p}_1) \qquad \mathbf{n}(\mathbf{p}_2) = \beta(\mathbf{p}_1 - \mathbf{p}_2),$$

where $\mathbf{n}(\mathbf{p}_i)$ denotes the normal of Q_i in \mathbf{p}_i , or

Closest Points Between Faces

Let f_1 and f_2 be disjoint faces of quadratic complexes that are embedded on the quadratic surfaces Q_1 and Q_2 , where

$$Q_1 := \{ \mathbf{x} | \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} + 2\mathbf{a}^\mathsf{T} \mathbf{x} + \mathbf{a}_0 = \mathbf{0} \},$$

$$Q_2 := \{ \mathbf{y} | \mathbf{y}^\mathsf{T} \mathbf{B} \mathbf{y} + 2\mathbf{b}^\mathsf{T} \mathbf{y} + \mathbf{b}_0 = \mathbf{0} \}.$$

If $(\mathbf{p}_1, \mathbf{p}_2)$ is a pair of closest points between f_1 and f_2 , then either

(i) $(\mathbf{p}_1, \mathbf{p}_2)$ is an extremum of the distance function between Q_1 and Q_2 , i.e. there are $\alpha, \beta \in \mathbb{R}, \ \alpha, \beta \neq 0$ s.t.

$$\mathbf{n}(\mathbf{p}_1) = \alpha(\mathbf{p}_2 - \mathbf{p}_1) \qquad \mathbf{n}(\mathbf{p}_2) = \beta(\mathbf{p}_1 - \mathbf{p}_2),$$

where $\mathbf{n}(\mathbf{p}_i)$ denotes the normal of Q_i in \mathbf{p}_i , or

(ii) \mathbf{p}_1 or \mathbf{p}_2 lies on the boundary of the face f_1 or f_2 , respectively.

ENTITYDISTANCE(E_1, E_2) (1)

ENTITYDISTANCE(E₁, E₂) (1) [isDisjoint, ($\mathbf{p}_1, \mathbf{p}_2$)] \leftarrow INTERSECT(E₁, E₂) (2) if isDisjoint = false (2) return [0 ($\mathbf{p}_1, \mathbf{p}_2$)]

(3) return $[0, (p_1, p_2)]$

Degree Complexity of the Polynomial Systems

Theorem 1 (General Quadratic Complexes)

- The distance between two faces of quadratic complexes can be computed by solving systems of univariate and bivariate polynomials in which the degree of every variable is at most 6.
- These systems can be solved by finding the roots of univariate polynomials of a degree of at most 24.

Degree Complexity of the Polynomial Systems

Theorem 1 (General Quadratic Complexes)

- The distance between two faces of quadratic complexes can be computed by solving systems of univariate and bivariate polynomials in which the degree of every variable is at most 6.
- These systems can be solved by finding the roots of univariate polynomials of a degree of at most 24.

Theorem 2 (Natural Quadratic Complexes)

The distance between two faces embedded on natural quadrics and trimmed by natural conics can be computed by solving univariate polynomials of a degree of at most 8.

Degree Complexity of the Polynomial Systems

Theorem 1 (General Quadratic Complexes)

- The distance between two faces of quadratic complexes can be computed by solving systems of univariate and bivariate polynomials in which the degree of every variable is at most 6.
- These systems can be solved by finding the roots of univariate polynomials of a degree of at most 24.

Theorem 2 (Natural Quadratic Complexes)

The distance between two faces embedded on natural quadrics and trimmed by natural conics can be computed by solving univariate polynomials of a degree of at most 8.

Remark 1 (Torus)

If one extends the classes by the torus, the results remain valid. The distance to any other surface or curve can be computed by considering its main circle.

Overview of the Approach

The LAGRANGE-formalism for the point-surface problem, gives:

$$\mathcal{L}(\mathbf{x}; \alpha) = (\mathbf{x} - \mathbf{p})^2 + \alpha (\mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{a}^T \mathbf{x} + \mathbf{a}_0),$$

The LAGRANGE-formalism for the point-surface problem, gives:

$$\mathcal{L}(\mathbf{x}; \alpha) = (\mathbf{x} - \mathbf{p})^2 + \alpha (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_0),$$

(i)
$$\frac{\partial \mathcal{L}(.)}{\partial \mathbf{x}} = 0 \iff \alpha (\mathbf{A}\mathbf{x} + \mathbf{a}) = \mathbf{p} - \mathbf{x},$$

(ii) $\frac{\partial \mathcal{L}(.)}{\partial \alpha} = 0 \iff \mathbf{x}^{\mathsf{T}} \mathbf{A}\mathbf{x} + 2\mathbf{a}^{\mathsf{T}}\mathbf{x} + \mathbf{a}_{0} = 0.$

The LAGRANGE-formalism for the point-surface problem, gives:

$$\mathcal{L}(\mathbf{x};\alpha) = (\mathbf{x} - \mathbf{p})^2 + \alpha (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_0),$$

(i)
$$\frac{\partial \mathcal{L}(.)}{\partial \mathbf{x}} = 0 \iff \alpha (\mathbf{A}\mathbf{x} + \mathbf{a}) = \mathbf{p} - \mathbf{x},$$

(ii) $\frac{\partial \mathcal{L}(.)}{\partial \alpha} = 0 \iff \mathbf{x}^{\mathsf{T}} \mathbf{A}\mathbf{x} + 2\mathbf{a}^{\mathsf{T}}\mathbf{x} + \mathbf{a}_{0} = 0.$

From the first LAGRANGE-condition, we can derive:

$$\mathbf{x} = (\mathbf{E} + \alpha \mathbf{A})^{-1}(\mathbf{p} - \alpha \mathbf{a}) =: \mathbf{D}_{\alpha}^{-1}\mathbf{p}_{\alpha}.$$

The LAGRANGE-formalism for the point-surface problem, gives:

$$\mathcal{L}(\mathbf{x};\alpha) = (\mathbf{x} - \mathbf{p})^2 + \alpha (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_0),$$

(i)
$$\frac{\partial \mathcal{L}(.)}{\partial \mathbf{x}} = 0 \iff \alpha (\mathbf{A}\mathbf{x} + \mathbf{a}) = \mathbf{p} - \mathbf{x},$$

(ii) $\frac{\partial \mathcal{L}(.)}{\partial \alpha} = 0 \iff \mathbf{x}^{\mathsf{T}} \mathbf{A}\mathbf{x} + 2\mathbf{a}^{\mathsf{T}}\mathbf{x} + \mathbf{a}_{0} = 0.$

From the first LAGRANGE-condition, we can derive:

$$\mathbf{x} = (\mathbf{E} + \alpha \mathbf{A})^{-1}(\mathbf{p} - \alpha \mathbf{a}) =: \mathbf{D}_{\alpha}^{-1}\mathbf{p}_{\alpha}.$$

Substituting x in the second equation gives the univariate system:

$$f(\alpha) = \mathbf{p}_{\alpha}^{\mathsf{T}} \overline{\mathbf{D}}_{\alpha} \mathbf{A} \overline{\mathbf{D}}_{\alpha} \mathbf{p}_{\alpha} + 2\mathbf{a}^{\mathsf{T}} \overline{\mathbf{D}}_{\alpha} \mathbf{p}_{\alpha} \mathbf{a} |\mathbf{D}_{\alpha}| + a_{0} |\mathbf{D}_{\alpha}|^{2} = 0,$$

where $\overline{\mathbf{D}}_{\alpha}$ denotes the adjoint and $|\mathbf{D}_{\alpha}|$ the determinant of \mathbf{D}_{α} .

If we denote

- the i-th diagonal element of D_{α} by d_i , i.e. $d_i := 1 + \alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $\mathbf{p}_{\alpha i}$, i.e. $\mathbf{p}_{\alpha i} := \mathbf{p}_i \alpha \mathbf{a}_i$,

If we denote

- the i-th diagonal element of D_{α} by d_i , i.e. $d_i := 1 + \alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $\mathbf{p}_{\alpha i}$, i.e. $\mathbf{p}_{\alpha i} := \mathbf{p}_i \alpha \mathbf{a}_i$,

then the equation $f(\alpha) = 0$ can be written as:

$$f(\alpha) = A_1 p_{\alpha 1}^2 d_2^2 d_3^2 + A_2 p_{\alpha 2}^2 d_1^2 d_3^2 + A_3 p_{\alpha 3}^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 + 2(a_1 p_{\alpha 1} d_1 d_2^2 d_3^2 + a_2 p_{\alpha 2} d_1^2 d_2 d_3^2 + a_3 p_{\alpha 3} d_1^2 d_2^2 d_3) = 0$$

If we denote

- the i-th diagonal element of \mathbf{D}_{α} by d_i , i.e. $d_i := 1 + \alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $p_{\alpha i}$, i.e. $p_{\alpha i} := p_i \alpha a_i$,

then the equation $f(\alpha) = 0$ can be written as:

$$f(\alpha) = A_1 p_{\alpha 1}^2 d_2^2 d_3^2 + A_2 p_{\alpha 2}^2 d_1^2 d_3^2 + A_3 p_{\alpha 3}^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 + 2(a_1 p_{\alpha 1} d_1 d_2^2 d_3^2 + a_2 p_{\alpha 2} d_1^2 d_2 d_3^2 + a_3 p_{\alpha 3} d_1^2 d_2^2 d_3) = 0$$

If we denote

- the i-th diagonal element of D_{α} by d_i , i.e. $d_i := 1 + \alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $\mathbf{p}_{\alpha i}$, i.e. $\mathbf{p}_{\alpha i} := \mathbf{p}_i \alpha \mathbf{a}_i$,

then the equation $f(\alpha) = 0$ can be written as:

$$f(\alpha) = A_1 p_{\alpha 1}^2 d_2^2 d_3^2 + A_2 p_{\alpha 2}^2 d_1^2 d_3^2 + A_3 p_{\alpha 3}^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 + 2(a_1 p_{\alpha 1} d_1 d_2^2 d_3^2 + a_2 p_{\alpha 2} d_1^2 d_2 d_3^2 + a_3 p_{\alpha 3} d_1^2 d_2^2 d_3) = 0$$

Example 3 (Point vs Central Surface) For ellipsoids and hyperboloid we have:

$$\mathbf{a} = \mathbf{0} \quad \Rightarrow \quad \mathbf{p}_{\alpha} = \mathbf{p} \quad and$$
$$\mathbf{f}(\alpha) = A_1 p_1^2 \mathbf{d}_2^2 \mathbf{d}_3^2 + A_2 p_2^2 \mathbf{d}_1^2 \mathbf{d}_3^2 + A_3 p_3^2 \mathbf{d}_1^2 \mathbf{d}_2^2 + \mathbf{a}_0 \mathbf{d}_1^2 \mathbf{d}_2^2 \mathbf{d}_3^2 = \mathbf{0}.$$

If we denote

- the i-th diagonal element of \mathbf{D}_{α} by d_i , i.e. $d_i := 1 + \alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $\mathbf{p}_{\alpha i}$, i.e. $\mathbf{p}_{\alpha i} := \mathbf{p}_i \alpha \mathbf{a}_i$,

then the equation $f(\alpha) = 0$ can be written as:

$$f(\alpha) = A_1 p_{\alpha 1}^2 d_2^2 d_3^2 + A_2 p_{\alpha 2}^2 d_1^2 d_3^2 + A_3 p_{\alpha 3}^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 + 2(a_1 p_{\alpha 1} d_1 d_2^2 d_3^2 + a_2 p_{\alpha 2} d_1^2 d_2 d_3^2 + a_3 p_{\alpha 3} d_1^2 d_2^2 d_3) = 0$$

Example 3 (Point vs Central Surface) For ellipsoids and hyperboloid we have:

$$\mathbf{a} = \mathbf{0} \implies \mathbf{p}_{\alpha} = \mathbf{p} \quad and$$

$$f(\alpha) = A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = \mathbf{0}. \quad deg(\mathbf{f}) = \mathbf{6}$$

Summary: Point-Surface-Case

Point - Central Surface				
Ellipsoid Hyperboloids		Cone		
6	6	4		

Point - Non-Central Surface					
Paraboloids	Elliptic / Hyperbolic	Parabolic			
	Cylinder	Cylinder			
5	4	3			

Substituting **p** by the explicit representation of a **conic**, i.e.

$$P: \quad \mathbf{p}(t) = c + r(t)\mathbf{u} + s(t)\mathbf{v},$$

Substituting **p** by the explicit representation of a conic, i.e.

$$P: \quad \mathbf{p}(t) = \mathbf{c} + \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v},$$

gives now three LAGRANGE-conditions:

(i)
$$\frac{\partial \mathcal{L}(.)}{\partial \mathbf{x}} = 0 \iff \alpha (\mathbf{A}\mathbf{x} + \mathbf{a}) = \mathbf{p} - \mathbf{x},$$

(ii) $\frac{\partial \mathcal{L}(.)}{\partial \alpha} = 0 \iff \mathbf{x}^{\mathsf{T}} \mathbf{A}\mathbf{x} + 2\mathbf{a}^{\mathsf{T}}\mathbf{x} + \mathbf{a}_{0} = 0,$

Substituting **p** by the explicit representation of a conic, i.e.

$$P: \quad \mathbf{p}(t) = \mathbf{c} + \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v},$$

gives now three LAGRANGE-conditions:

(i)
$$\frac{\partial \mathcal{L}(.)}{\partial \mathbf{x}} = 0 \iff \alpha (\mathbf{A}\mathbf{x} + \mathbf{a}) = \mathbf{p} - \mathbf{x},$$

(ii) $\frac{\partial \mathcal{L}(.)}{\partial \alpha} = 0 \iff \mathbf{x}^{\mathsf{T}} \mathbf{A}\mathbf{x} + 2\mathbf{a}^{\mathsf{T}}\mathbf{x} + \mathbf{a}_{0} = 0,$
(iii) $\frac{\partial \mathcal{L}(.)}{\partial \mathbf{t}} = 0 \iff (\mathbf{x} - \mathbf{p})^{\mathsf{T}} \frac{\partial \mathbf{p}}{\partial \mathbf{t}} = 0.$

Substituting **p** by the explicit representation of a conic, i.e.

$$P: \quad \mathbf{p}(t) = \mathbf{c} + \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v},$$

gives now three LAGRANGE-conditions:

(i)
$$\frac{\partial \mathcal{L}(.)}{\partial \mathbf{x}} = 0 \iff \alpha (\mathbf{A}\mathbf{x} + \mathbf{a}) = \mathbf{p} - \mathbf{x},$$

(ii) $\frac{\partial \mathcal{L}(.)}{\partial \alpha} = 0 \iff \mathbf{x}^{\mathsf{T}} \mathbf{A}\mathbf{x} + 2\mathbf{a}^{\mathsf{T}}\mathbf{x} + \mathbf{a}_{0} = 0,$
(iii) $\frac{\partial \mathcal{L}(.)}{\partial \mathbf{t}} = 0 \iff (\mathbf{x} - \mathbf{p})^{\mathsf{T}} \frac{\partial \mathbf{p}}{\partial \mathbf{t}} = 0.$

and in contrast to the point-surface case a bivariate system of equations:

$$\begin{aligned} \mathbf{f}(\alpha, \mathbf{t}) &= \mathbf{p}_{\alpha}^{\mathsf{T}} \overline{\mathbf{D}}_{\alpha} \mathbf{A} \overline{\mathbf{D}}_{\alpha} \mathbf{p}_{\alpha} + 2 \mathbf{a}^{\mathsf{T}} \overline{\mathbf{D}}_{\alpha} \mathbf{p}_{\alpha} \mathbf{a} |\mathbf{D}_{\alpha}| + a_{0} |\mathbf{D}_{\alpha}|^{2} &= \mathbf{0}, \\ \mathbf{g}(\alpha, \mathbf{t}) &= \left(\overline{\mathbf{D}}_{\alpha} \mathbf{p}_{\alpha} - |\mathbf{D}_{\alpha}| \mathbf{p} \right) \frac{\partial \mathbf{p}}{\partial \mathbf{t}} = \mathbf{0}. \end{aligned}$$

Again, we denote

- the i-th diagonal element of D_{α} by d_i , i.e. $d_i := 1 + \alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $\mathbf{p}_{\alpha i}$, i.e. $\mathbf{p}_{\alpha i} := \mathbf{p}_i \alpha \mathbf{a}_i$,

Again, we denote

- the i-th diagonal element of \mathbf{D}_{α} by d_i , i.e. $d_i := 1 + \alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $\mathbf{p}_{\alpha i}$, i.e. $\mathbf{p}_{\alpha i} := \mathbf{p}_i \alpha \mathbf{a}_i$,

such that the system $f(\alpha, t) = g(\alpha, t) = 0$ can be written as:

$$f(\alpha, t) = A_1 p_{\alpha 1}^2 d_2^2 d_3^2 + A_2 p_{\alpha 2}^2 d_1^2 d_3^2 + A_3 p_{\alpha 3}^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 + 2(a_1 p_{\alpha 1} d_1 d_2^2 d_3^2 + a_2 p_{\alpha 2} d_1^2 d_2 d_3^2 + a_3 p_{\alpha 3} d_1^2 d_2^2 d_3) = 0$$

$$g(\alpha, t) = (A_1p_1 + a_1)p'_1d_2d_3 + (A_2p_2 + a_2)p'_2d_1d_3 + (A_3p_3 + a_3)p'_3d_1d_2 = 0,$$

with $\mathbf{p}' := \frac{\partial \mathbf{p}}{\partial t}$ and $\mathbf{p} = \mathbf{c} + \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v}$.

Again, we denote

- \bullet the i-th diagonal element of D_{α} by $d_i,$ i.e. $d_i:=1+\alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $p_{\alpha i}$, i.e. $p_{\alpha i} := p_i \alpha a_i$,

such that the system $f(\alpha, t) = g(\alpha, t) = 0$ can be written as:

$$f(\alpha, t) = A_1 p_{\alpha 1}^2 d_2^2 d_3^2 + A_2 p_{\alpha 2}^2 d_1^2 d_3^2 + A_3 p_{\alpha 3}^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 + 2(a_1 p_{\alpha 1} d_1 d_2^2 d_3^2 + a_2 p_{\alpha 2} d_1^2 d_2 d_3^2 + a_3 p_{\alpha 3} d_1^2 d_2^2 d_3) = 0$$

$$g(\alpha, t) = (A_1p_1 + a_1)p'_1d_2d_3 + (A_2p_2 + a_2)p'_2d_1d_3 + (A_3p_3 + a_3)p'_3d_1d_2 = 0,$$

with $\mathbf{p}' := \frac{\partial \mathbf{p}}{\partial t}$ and $\mathbf{p} = \mathbf{c} + \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v}$.

Again, we denote

- \bullet the i-th diagonal element of D_{α} by $d_i,$ i.e. $d_i:=1+\alpha A_i$ and
- the i-th component of \mathbf{p}_{α} by $\mathbf{p}_{\alpha i}$, i.e. $\mathbf{p}_{\alpha i} := \mathbf{p}_i \alpha \mathbf{a}_i$,

such that the system $f(\alpha, t) = g(\alpha, t) = 0$ can be written as:

$$f(\alpha, \mathbf{t}) = A_1 p_{\alpha 1}^2 d_2^2 d_3^2 + A_2 p_{\alpha 2}^2 d_1^2 d_3^2 + A_3 p_{\alpha 3}^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 + 2(a_1 p_{\alpha 1} d_1 d_2^2 d_3^2 + a_2 p_{\alpha 2} d_1^2 d_2 d_3^2 + a_3 p_{\alpha 3} d_1^2 d_2^2 d_3) = 0$$

$$g(\alpha, \mathbf{t}) = (A_1 \mathbf{p}_1 + a_1) \mathbf{p}'_1 \mathbf{d}_2 \mathbf{d}_3 + (A_2 \mathbf{p}_2 + a_2) \mathbf{p}'_2 \mathbf{d}_1 \mathbf{d}_3 + (A_3 \mathbf{p}_3 + a_3) \mathbf{p}'_3 \mathbf{d}_1 \mathbf{d}_2 = \mathbf{0},$$

with $\mathbf{p}' := \frac{\partial \mathbf{p}}{\partial t}$ and $\mathbf{p} = \mathbf{c} + \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v}$.

In the case of ellipsoids our system simplifies to

$$f(\alpha, t) = A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0,$$

 $g(\alpha,t) = A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0.$

In the case of ellipsoids our system simplifies to

$$\begin{aligned} f(\alpha, t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha, t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0. \end{aligned}$$

For P being an ellipse we have to use a rational parameterization:

$$\mathbf{p}(t) := \mathbf{c} + \frac{1 - t^2}{1 + t^2} \mathbf{u} + \frac{2t}{1 + t^2} \mathbf{v} \qquad \mathbf{p}'(t) := \frac{2}{1 + t^2} \left[\frac{1 - t^2}{1 + t^2} \mathbf{v} - \frac{2t}{1 + t^2} \mathbf{u} \right]$$

In the case of ellipsoids our system simplifies to

$$\begin{split} f(\alpha,t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha,t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0. \end{split}$$

For P being an ellipse we have to use a rational parameterization:

$$\mathbf{p}(t) := \mathbf{c} + \frac{1 - t^2}{1 + t^2} \mathbf{u} + \frac{2t}{1 + t^2} \mathbf{v} \qquad \mathbf{p}'(t) := \frac{2}{1 + t^2} \left[\frac{1 - t^2}{1 + t^2} \mathbf{v} - \frac{2t}{1 + t^2} \mathbf{u} \right]$$

and finally eliminate the denominators:

$$\begin{split} f(\alpha, t) &= A_1 q_1^2 d_2^2 d_3^2 + A_2 q_2^2 d_1^2 d_3^2 + A_3 q_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 (1+t^2)^2 = 0, \\ g(\alpha, t) &= A_1 q_1 q_1' d_2 d_3 + A_2 q_2 q_2' d_1 d_3 + A_3 q_3 q_3' d_1 d_2 = 0, \\ \text{with } \mathbf{q}(t) &:= \mathbf{c} + (1-t^2) \mathbf{u} + 2t \mathbf{v} \quad \text{and} \quad \mathbf{q}'(t) &:= \mathbf{c} - 2t \mathbf{u} + (1-t^2) \mathbf{v}. \end{split}$$

In the case of ellipsoids our system simplifies to

$$\begin{split} f(\alpha,t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha,t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0. \end{split}$$

For P being an ellipse we have to use a rational parameterization:

$$\mathbf{p}(t) := \mathbf{c} + \frac{1 - t^2}{1 + t^2} \mathbf{u} + \frac{2t}{1 + t^2} \mathbf{v} \qquad \mathbf{p}'(t) := \frac{2}{1 + t^2} \left[\frac{1 - t^2}{1 + t^2} \mathbf{v} - \frac{2t}{1 + t^2} \mathbf{u} \right]$$

and finally eliminate the denominators:

$$\begin{split} f(\alpha, t) &= A_1 q_1^2 d_2^2 d_3^2 + A_2 q_2^2 d_1^2 d_3^2 + A_3 q_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 (1+t^2)^2 = 0, \\ g(\alpha, t) &= A_1 q_1 q_1' d_2 d_3 + A_2 q_2 q_2' d_1 d_3 + A_3 q_3 q_3' d_1 d_2 = 0, \\ \text{with } \mathbf{q}(t) &:= \mathbf{c} + (1-t^2)\mathbf{u} + 2t\mathbf{v} \quad \text{and} \quad \mathbf{q}'(t) &:= \mathbf{c} - 2t\mathbf{u} + (1-t^2)\mathbf{v}. \end{split}$$

In the case of ellipsoids our system simplifies to

$$\begin{split} f(\alpha,t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha,t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0. \end{split}$$

For P being an ellipse we have to use a rational parameterization:

$$\mathbf{p}(t) := \mathbf{c} + \frac{1 - t^2}{1 + t^2} \mathbf{u} + \frac{2t}{1 + t^2} \mathbf{v} \qquad \mathbf{p}'(t) := \frac{2}{1 + t^2} \left[\frac{1 - t^2}{1 + t^2} \mathbf{v} - \frac{2t}{1 + t^2} \mathbf{u} \right]$$

and finally eliminate the denominators:

$$\begin{aligned} f(\alpha, \mathbf{t}) &= A_1 \mathbf{q}_1^2 d_2^2 d_3^2 + A_2 \mathbf{q}_2^2 d_1^2 d_3^2 + A_3 \mathbf{q}_3^2 d_1^2 d_2^2 + \alpha_0 d_1^2 d_2^2 d_3^2 (1 + \mathbf{t}^2)^2 = 0, \\ g(\alpha, \mathbf{t}) &= A_1 \mathbf{q}_1 \mathbf{q}_1' d_2 d_3 + A_2 \mathbf{q}_2 \mathbf{q}_2' d_1 d_3 + A_3 \mathbf{q}_3 \mathbf{q}_3' d_1 d_2 = 0, \\ \text{with } \mathbf{q}(\mathbf{t}) &:= \mathbf{c} + (1 - \mathbf{t}^2) \mathbf{u} + 2\mathbf{t} \mathbf{v} \quad \text{and} \quad \mathbf{q}'(\mathbf{t}) := \mathbf{c} - 2\mathbf{t} \mathbf{u} + (1 - \mathbf{t}^2) \mathbf{v}. \end{aligned}$$

In the case of ellipsoids our system simplifies to

$$\begin{split} f(\alpha,t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha,t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0. \end{split}$$

For P being an ellipse we have to use a rational parameterization:

$$\mathbf{p}(t) := \mathbf{c} + \frac{1 - t^2}{1 + t^2} \mathbf{u} + \frac{2t}{1 + t^2} \mathbf{v} \qquad \mathbf{p}'(t) := \frac{2}{1 + t^2} \left[\frac{1 - t^2}{1 + t^2} \mathbf{v} - \frac{2t}{1 + t^2} \mathbf{u} \right]$$

and finally eliminate the denominators:

$$\begin{split} f(\alpha,t) &= A_1 q_1^2 d_2^2 d_3^2 + A_2 q_2^2 d_1^2 d_3^2 + A_3 q_3^2 d_1^2 d_2^2 + \alpha_0 d_1^2 d_2^2 d_3^2 (1+t^2)^2 = 0, \\ g(\alpha,t) &= A_1 q_1 q_1' d_2 d_3 + A_2 q_2 q_2' d_1 d_3 + A_3 q_3 q_3' d_1 d_2 = 0, \\ \text{with } \mathbf{q}(t) &\coloneqq \mathbf{c} + (1-t^2) \mathbf{u} + 2t \mathbf{v} \quad \text{and} \quad \mathbf{q}'(t) &\coloneqq \mathbf{c} - 2t \mathbf{u} + (1-t^2) \mathbf{v}. \end{split}$$

Problem: The degree of the Res(f, g) is 32 (Mixed-Volume Bound).

Proposition 1 (The Case of Central Surfaces) Let f = g = 0 be our system of equations, i.e.

$$\begin{split} f(\alpha,t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha,t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0, \end{split}$$

and let α_i denote the root of d_i , i = 1, 2, 3. Then the following holds:

Proposition 1 (The Case of Central Surfaces) Let f = g = 0 be our system of equations, i.e.

$$\begin{split} f(\alpha,t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha,t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0, \end{split}$$

and let α_i denote the root of d_i , i = 1, 2, 3. Then the following holds:

(i) The pair (α_i, t_i) is a solution of the bivariate system for every t_i solving the equation $p_i = 0$, i = 1, 2, 3.

Proposition 1 (The Case of Central Surfaces) Let f = g = 0 be our system of equations, i.e.

$$\begin{split} f(\alpha,t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha,t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0, \end{split}$$

and let α_i denote the root of d_i , i = 1, 2, 3. Then the following holds:

- (i) The pair (α_i, t_i) is a solution of the bivariate system for every t_i solving the equation $p_i = 0$, i = 1, 2, 3.
- (ii) If the curve is not a line, then every α_i is a root of multiplicity 4 in Res(f, g, t), whereas every t_i has multiplicity 2 in $\text{Res}(f, g, \alpha)$.

Proposition 1 (The Case of Central Surfaces) Let f = g = 0 be our system of equations, i.e.

$$\begin{split} f(\alpha,t) &= A_1 p_1^2 d_2^2 d_3^2 + A_2 p_2^2 d_1^2 d_3^2 + A_3 p_3^2 d_1^2 d_2^2 + a_0 d_1^2 d_2^2 d_3^2 = 0, \\ g(\alpha,t) &= A_1 p_1 p_1' d_2 d_3 + A_2 p_2 p_2' d_1 d_3 + A_3 p_3 p_3' d_1 d_2 = 0, \end{split}$$

and let α_i denote the root of d_i , i = 1, 2, 3. Then the following holds:

- (i) The pair (α_i, t_i) is a solution of the bivariate system for every t_i solving the equation $p_i = 0$, i = 1, 2, 3.
- (ii) If the curve is not a line, then every α_i is a root of multiplicity 4 in Res(f, g, t), whereas every t_i has multiplicity 2 in $\text{Res}(f, g, \alpha)$.
- (iii) If the curve is a line, then every α_i and t_i (which is now unique) is a root of multiplicity 2 in Res(f, g, t) and Res(f, g, α) respectively.

Corollary 1 (Degree Complexity in the Case of Central Surfaces) If the curve is not a line, the Resultant Polynomial can be written as the following product:

$$Res(f, g, t) = h_{\alpha} \prod_{i=1}^{3} d_{i}^{4} = h_{\alpha} \prod_{i=1}^{3} (\alpha - \alpha_{i})^{4},$$

$$Res(f, g, \alpha) = h_{t} \prod_{i=1}^{3} p_{i}^{2} = h_{t} \prod_{i=1}^{3} (t - t_{i1})^{2} (t - t_{i2})^{2}.$$

where h_{α} and h_t are univariate polynomials of degree at most 20.

Corollary 1 (Degree Complexity in the Case of Central Surfaces) If the curve is not a line, the Resultant Polynomial can be written as the following product:

$$Res(f, g, t) = h_{\alpha} \prod_{i=1}^{3} d_{i}^{4} = h_{\alpha} \prod_{i=1}^{3} (\alpha - \alpha_{i})^{4},$$

$$Res(f, g, \alpha) = h_{t} \prod_{i=1}^{3} p_{i}^{2} = h_{t} \prod_{i=1}^{3} (t - t_{i1})^{2} (t - t_{i2})^{2}.$$

where h_{α} and h_t are univariate polynomials of degree at most 20.

Remark 2 (The Case of Non-Central Surfaces)

An analogous result can be found for non-central surfaces. However, in this case there are only two $d_i \neq 0$, (i = 1, 2) and consequently only two α_i dividing Res(f, g, t).

Summary: Curve - Surface Case

Curve - Central Surface						
	Ellipsoid	Hyperboloids	Cone			
Ellipse	20	20	12			
Hyperbola	20	20	12			
Parabola	14	14	8			
Line	4	4	2			

Curve - Non-Central Surface					
	Paraboloids	Elliptical / Hyperbolical	Parabolical		
		Cylinder	Cylinder		
Ellipse	16	12	8		
Hyperbola	16	12	8		
Parabola	11	8	5		
Line	3	2	1		

The Surface-Surface Case

By setting up the LAGRANGE formalism for the problem

min $(\mathbf{x} - \mathbf{y})^2$, $\mathbf{x} \in Q_1, \mathbf{y} \in Q_2$
The Surface-Surface Case

By setting up the LAGRANGE formalism for the problem

$$\min (\mathbf{x} - \mathbf{y})^2, \quad \mathbf{x} \in Q_1, \mathbf{y} \in Q_2$$

we get the LAGRANGE function \mathcal{L} and conditions $(i), \ldots, (i\nu)$:

$$\mathcal{L}(\mathbf{x}, \mathbf{y}; \alpha, \beta) = (\mathbf{x} - \mathbf{y})^2 + \alpha (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_0) \\ + \beta (\mathbf{y}^{\mathsf{T}} \mathbf{B} \mathbf{y} + 2\mathbf{b}^{\mathsf{T}} \mathbf{y} + \mathbf{b}_0)$$

The Surface-Surface Case

By setting up the LAGRANGE formalism for the problem

$$\min (\mathbf{x} - \mathbf{y})^2, \quad \mathbf{x} \in Q_1, \mathbf{y} \in Q_2$$

we get the LAGRANGE function \mathcal{L} and conditions $(i), \ldots, (i\nu)$:

$$\mathcal{L}(\mathbf{x}, \mathbf{y}; \alpha, \beta) = (\mathbf{x} - \mathbf{y})^{2} + \alpha (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + a_{0}) \\ + \beta (\mathbf{y}^{\mathsf{T}} \mathbf{B} \mathbf{y} + 2\mathbf{b}^{\mathsf{T}} \mathbf{y} + b_{0}) \\ (\mathbf{i}) \partial \frac{\mathcal{L}(.)}{\partial \mathbf{x}} = 0 \iff \alpha (\mathbf{A} \mathbf{x} + \mathbf{a}) = \mathbf{y} - \mathbf{x} \\ (\mathbf{i}\mathbf{i}) \partial \frac{\mathcal{L}(.)}{\partial \mathbf{y}} = 0 \iff \beta (\mathbf{B} \mathbf{y} + \mathbf{b}) = \mathbf{x} - \mathbf{y}$$

The Surface-Surface Case

By setting up the LAGRANGE formalism for the problem

$$\min (\mathbf{x} - \mathbf{y})^2, \quad \mathbf{x} \in Q_1, \mathbf{y} \in Q_2$$

we get the LAGRANGE function \mathcal{L} and conditions $(i), \ldots, (i\nu)$:

$$\mathcal{L}(\mathbf{x}, \mathbf{y}; \alpha, \beta) = (\mathbf{x} - \mathbf{y})^{2} + \alpha(\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_{0}) \\ + \beta(\mathbf{y}^{\mathsf{T}} \mathbf{B} \mathbf{y} + 2\mathbf{b}^{\mathsf{T}} \mathbf{y} + \mathbf{b}_{0}) \\ (\mathbf{i}) \partial \frac{\mathcal{L}(.)}{\partial \mathbf{x}} = \mathbf{0} \iff \alpha(\mathbf{A}\mathbf{x} + \mathbf{a}) = \mathbf{y} - \mathbf{x} \\ (\mathbf{i}) \partial \frac{\mathcal{L}(.)}{\partial \mathbf{y}} = \mathbf{0} \iff \beta(\mathbf{B}\mathbf{y} + \mathbf{b}) = \mathbf{x} - \mathbf{y} \\ (\mathbf{i}\mathbf{i}) \partial \frac{\mathcal{L}(.)}{\partial \alpha} = \mathbf{0} \iff \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{a}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_{0} = \mathbf{0} \\ (\mathbf{i}\mathbf{v}) \partial \frac{\mathcal{L}(.)}{\partial \beta} = \mathbf{0} \iff \mathbf{y}^{\mathsf{T}} \mathbf{B} \mathbf{y} + 2\mathbf{b}^{\mathsf{T}} \mathbf{y} + \mathbf{b}_{0} = \mathbf{0} \end{cases}$$

Solving the Lagrange System

By setting $\lambda := 1/\alpha$ and $\mu := 1/\beta$ we can derive from (i) and (ii):

$$\mathbf{x} = -(\mathbf{B}\mathbf{A} + \lambda\mathbf{B} + \mu\mathbf{A})^{-1}(\mathbf{B}\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{a}) =: -\frac{\mathbf{C}_{\lambda,\mu}}{|\mathbf{C}_{\lambda,\mu}|}\mathbf{c}_{\mathrm{B}},$$
$$\mathbf{y} = -(\mathbf{A}\mathbf{B} + \lambda\mathbf{B} + \mu\mathbf{A})^{-1}(\mathbf{A}\mathbf{b} + \lambda\mathbf{b} + \mu\mathbf{a}) =: -\frac{\overline{\mathbf{C}}_{\lambda,\mu}^{\mathrm{T}}}{|\mathbf{C}_{\lambda,\mu}|}\mathbf{c}_{\mathrm{A}},$$

where $\overline{C}_{\lambda,\mu}$ and $|C_{\lambda,\mu}|$ are (matrix) polynomials in λ and μ .

Solving the Lagrange System

By setting $\lambda := 1/\alpha$ and $\mu := 1/\beta$ we can derive from (i) and (ii):

$$\mathbf{x} = -(\mathbf{B}\mathbf{A} + \lambda\mathbf{B} + \mu\mathbf{A})^{-1}(\mathbf{B}\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{a}) =: -\frac{\mathbf{C}_{\lambda,\mu}}{|\mathbf{C}_{\lambda,\mu}|}\mathbf{c}_{\mathrm{B}},$$
$$\mathbf{y} = -(\mathbf{A}\mathbf{B} + \lambda\mathbf{B} + \mu\mathbf{A})^{-1}(\mathbf{A}\mathbf{b} + \lambda\mathbf{b} + \mu\mathbf{a}) =: -\frac{\overline{\mathbf{C}}_{\lambda,\mu}^{\mathrm{T}}}{|\mathbf{C}_{\lambda,\mu}|}\mathbf{c}_{\mathrm{A}},$$

where $\overline{\mathbf{C}}_{\lambda,\mu}$ and $|\mathbf{C}_{\lambda,\mu}|$ are (matrix) polynomials in λ and μ .

Substituting x and y in (iii) and (iv) and multiplying my the denominator, gives the system:

$$\begin{split} f(\lambda,\mu) &= \mathbf{c}_{\mathrm{B}}^{\mathrm{T}}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathrm{T}}\mathbf{A}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{c}_{\mathrm{B}} - 2|\mathbf{C}_{\lambda,\mu}|\mathbf{a}^{\mathrm{T}}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{c}_{\mathrm{B}} + a_{0}|\mathbf{C}_{\lambda,\mu}|^{2} = 0, \\ g(\lambda,\mu) &= \mathbf{c}_{\mathrm{A}}^{\mathrm{T}}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{B}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathrm{T}}\mathbf{c}_{\mathrm{A}} - 2|\mathbf{C}_{\lambda,\mu}|\mathbf{b}^{\mathrm{T}}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathrm{T}}\mathbf{c}_{\mathrm{A}} + b_{0}|\mathbf{C}_{\lambda,\mu}|^{2} = 0, \end{split}$$

The Inverse of $C_{\lambda,\mu}$

Lemma 1

The adjoint and determinant of $C_{\lambda,\mu} = BA + \lambda B + \mu A$ is given by

$$\begin{split} \overline{\mathbf{C}_{\lambda,\mu}} &= \overline{\mathbf{B}}\lambda^2 + \overline{\mathbf{A}}\mu^2 + \mathbf{T}_{A}\overline{\mathbf{B}}\lambda + \overline{\mathbf{A}}\mathbf{T}_{B}\mu + (\mathbf{T}_{B}\mathbf{T}_{A} - \mathbf{T}_{AB})\lambda\mu + \overline{\mathbf{A}}\,\overline{\mathbf{B}}, \\ |\mathbf{C}_{\lambda,\mu}| &= |\mathbf{B}|\lambda^3 + |\mathbf{A}|\mu^3 + |\mathbf{B}|tr(\mathbf{A})\lambda^2 + |\mathbf{A}|tr(\mathbf{B})\mu^2 + \\ &\quad |\mathbf{B}|tr(\overline{\mathbf{A}})\lambda + |\mathbf{A}|tr(\overline{\mathbf{B}})\mu + tr(\overline{\mathbf{B}}\mathbf{A})\lambda^2\mu + tr(\overline{\mathbf{A}}\mathbf{B})\lambda\mu^2 + \\ &\quad (tr(\overline{\mathbf{A}})tr(\overline{\mathbf{B}}) - tr(\overline{\mathbf{A}}\,\overline{\mathbf{B}}))\lambda\mu + |\mathbf{A}||\mathbf{B}|, \end{split}$$

where $T_M := tr(M)E - M$ for a matrix $M \in \mathbb{R}^{3 \times 3}$.

The Inverse of $C_{\lambda,\mu}$

Lemma 1

The adjoint and determinant of $C_{\lambda,\mu} = BA + \lambda B + \mu A$ is given by

$$\begin{split} \overline{\mathbf{C}_{\lambda,\mu}} &= \overline{\mathbf{B}}\lambda^2 + \overline{\mathbf{A}}\mu^2 + \mathbf{T}_A \overline{\mathbf{B}}\lambda + \overline{\mathbf{A}} \mathbf{T}_B \mu + (\mathbf{T}_B \mathbf{T}_A - \mathbf{T}_{AB})\lambda \mu + \overline{\mathbf{A}} \overline{\mathbf{B}}, \\ |\mathbf{C}_{\lambda,\mu}| &= |\mathbf{B}|\lambda^3 + |\mathbf{A}|\mu^3 + |\mathbf{B}|tr(\mathbf{A})\lambda^2 + |\mathbf{A}|tr(\mathbf{B})\mu^2 + \\ &\quad |\mathbf{B}|tr(\overline{\mathbf{A}})\lambda + |\mathbf{A}|tr(\overline{\mathbf{B}})\mu + tr(\overline{\mathbf{B}}\mathbf{A})\lambda^2\mu + tr(\overline{\mathbf{A}}\mathbf{B})\lambda\mu^2 + \\ &\quad (tr(\overline{\mathbf{A}})tr(\overline{\mathbf{B}}) - tr(\overline{\mathbf{A}} \overline{\mathbf{B}}))\lambda\mu + |\mathbf{A}||\mathbf{B}|, \end{split}$$

where $T_M := tr(M)E - M$ for a matrix $M \in \mathbb{R}^{3 \times 3}$.

Proposition 2 (Bivariate Degree Complexity) The polynomials f and g have degree 6 in λ as well as μ . Moreover the total degree of f and g is also 6.

The Inverse of $C_{\lambda,\mu}$

Lemma 1

The adjoint and determinant of $C_{\lambda,\mu} = BA + \lambda B + \mu A$ is given by

$$\begin{split} \overline{\mathbf{C}_{\lambda,\mu}} &= \overline{\mathbf{B}}\lambda^2 + \overline{\mathbf{A}}\mu^2 + \mathbf{T}_{\mathbf{A}}\overline{\mathbf{B}}\lambda + \overline{\mathbf{A}}\mathbf{T}_{\mathbf{B}}\mu + (\mathbf{T}_{\mathbf{B}}\mathbf{T}_{\mathbf{A}} - \mathbf{T}_{\mathbf{A}\mathbf{B}})\lambda\mu + \overline{\mathbf{A}}\,\overline{\mathbf{B}}, \\ |\mathbf{C}_{\lambda,\mu}| &= |\mathbf{B}|\lambda^3 + |\mathbf{A}|\mu^3 + |\mathbf{B}|tr(\mathbf{A})\lambda^2 + |\mathbf{A}|tr(\mathbf{B})\mu^2 + \\ &\quad |\mathbf{B}|tr(\overline{\mathbf{A}})\lambda + |\mathbf{A}|tr(\overline{\mathbf{B}})\mu + tr(\overline{\mathbf{B}}\mathbf{A})\lambda^2\mu + tr(\overline{\mathbf{A}}\mathbf{B})\lambda\mu^2 + \\ &\quad (tr(\overline{\mathbf{A}})tr(\overline{\mathbf{B}}) - tr(\overline{\mathbf{A}}\,\overline{\mathbf{B}}))\lambda\mu + |\mathbf{A}||\mathbf{B}|, \end{split}$$

where $T_M := tr(M)E - M$ for a matrix $M \in \mathbb{R}^{3 \times 3}$.

Proposition 2 (Bivariate Degree Complexity) The polynomials f and g have degree 6 in λ as well as μ . Moreover the total degree of f and g is also 6.

Corollary 2 (BEZOUT)

The degree of the resultant polynomial Res(f, g) is at most 36.

Factorization of the Resultant Polynomial

Lemma 2

Let f = g = 0 be our system of polynomial equations, i.e.

$$\begin{split} \mathsf{f}(\lambda,\mu) &= \mathbf{c}_{\mathrm{B}}^{\mathsf{T}}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathsf{T}}\mathbf{A}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{c}_{\mathrm{B}} - 2|\mathbf{C}_{\lambda,\mu}|\mathbf{a}^{\mathsf{T}}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{c}_{\mathrm{B}} + a_{0}|\mathbf{C}_{\lambda,\mu}|^{2} = 0, \\ \mathsf{g}(\lambda,\mu) &= \mathbf{c}_{\mathrm{A}}^{\mathsf{T}}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{B}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathsf{T}}\mathbf{c}_{\mathrm{A}} - 2|\mathbf{C}_{\lambda,\mu}|\mathbf{b}^{\mathsf{T}}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathsf{T}}\mathbf{c}_{\mathrm{A}} + b_{0}|\mathbf{C}_{\lambda,\mu}|^{2} = 0, \end{split}$$

and the system **h** be defined as follows:

$$\mathbf{h}(\lambda,\mu) := (\mathbf{h}_1,\mathbf{h}_2,\mathbf{h}_3)^{\mathsf{T}} = \overline{\mathbf{C}}_{\lambda,\mu}\mathbf{c}_{\mathsf{B}} = \mathbf{0}.$$

Then the common roots of the polynomials $r_{ij} := \text{Res}(h_i, h_j)$, $1 \le i < j \le 3$, solve Res(f, g) with multiplicity 4.

Factorization of the Resultant Polynomial

Lemma 2

Let f = g = 0 be our system of polynomial equations, i.e.

$$\begin{split} \mathsf{f}(\lambda,\mu) &= \mathbf{c}_{\mathrm{B}}^{\mathsf{T}}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathsf{T}}\mathbf{A}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{c}_{\mathrm{B}} - 2|\mathbf{C}_{\lambda,\mu}|\mathbf{a}^{\mathsf{T}}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{c}_{\mathrm{B}} + \mathfrak{a}_{0}|\mathbf{C}_{\lambda,\mu}|^{2} = \mathbf{0}, \\ \mathsf{g}(\lambda,\mu) &= \mathbf{c}_{\mathrm{A}}^{\mathsf{T}}\overline{\mathbf{C}}_{\lambda,\mu}\mathbf{B}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathsf{T}}\mathbf{c}_{\mathrm{A}} - 2|\mathbf{C}_{\lambda,\mu}|\mathbf{b}^{\mathsf{T}}\overline{\mathbf{C}}_{\lambda,\mu}^{\mathsf{T}}\mathbf{c}_{\mathrm{A}} + b_{0}|\mathbf{C}_{\lambda,\mu}|^{2} = \mathbf{0}, \end{split}$$

and the system **h** be defined as follows:

$$\mathbf{h}(\lambda,\mu) := (\mathbf{h}_1,\mathbf{h}_2,\mathbf{h}_3)^{\mathsf{T}} = \overline{\mathbf{C}}_{\lambda,\mu}\mathbf{c}_{\mathsf{B}} = \mathbf{0}.$$

Then the common roots of the polynomials $r_{ij} := \text{Res}(h_i, h_j)$, $1 \le i < j \le 3$, solve Res(f, g) with multiplicity 4.

Proposition 3 (Degree Complexity)

Let p denote the polynomial given by the common roots of r_{ij} , $1 \le i < j \le 3$, and their multiplicities in Res(f, g). Then the remaining polynomial Res(f, g)/p is of a degree of at most 24.

Summary: Surface-Surface Case

	Central Surf	aces	Non-Central Surfaces			
	Ellipsoid / Hyperboloids	Cone	Paraboloids	E. / H. Cvlinder	Parabolic Cvlinder	
Ellipsoids / Hyperboloid	24	12	18	12	8	
Cone		4	8	4	2	
Paraboloids			13	8	5	
E. / H. Cylinder				4	2	

Let the conic Q lie in the x_1x_2 -plane and be centered around the origin, i.e.

Q:
$$\mathbf{q}(t) = \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v}, \quad \mathbf{u}^{\mathsf{T}}\mathbf{v} = \mathbf{0}.$$

Let the conic Q lie in the x_1x_2 -plane and be centered around the origin, i.e.

Q:
$$\mathbf{q}(t) = \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v}, \quad \mathbf{u}^{\mathsf{T}}\mathbf{v} = \mathbf{0}.$$

Projecting the query point **p** onto the same plane yields a 2-D problem:

$$\min_{\mathbf{t}}(\overline{\mathbf{p}}-\mathbf{r}(\mathbf{t})\mathbf{u}-\mathbf{s}(\mathbf{t})\mathbf{v})^2.$$

Let the conic Q lie in the x_1x_2 -plane and be centered around the origin, i.e.

Q:
$$\mathbf{q}(t) = \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v}, \quad \mathbf{u}^{\mathsf{T}}\mathbf{v} = \mathbf{0}.$$

Projecting the query point **p** onto the same plane yields a 2-D problem:

$$\min_{\mathbf{t}}(\overline{\mathbf{p}}-\mathbf{r}(\mathbf{t})\mathbf{u}-\mathbf{s}(\mathbf{t})\mathbf{v})^2.$$

Setting the derivative of the distance function equal to zero, gives

$$f(t) = r(t)r'(t)\mathbf{u}^2 + s(t)s'(t)\mathbf{v}^2 - r'(t)\overline{\mathbf{p}}^T\mathbf{u} - s'(t)\overline{\mathbf{p}}^T\mathbf{v} = 0,$$

with $r' \equiv \frac{dr}{dt}$ and $s' \equiv \frac{ds}{dt}$.

Let the conic Q lie in the x_1x_2 -plane and be centered around the origin, i.e.

Q:
$$\mathbf{q}(t) = \mathbf{r}(t)\mathbf{u} + \mathbf{s}(t)\mathbf{v}, \quad \mathbf{u}^{\mathsf{T}}\mathbf{v} = \mathbf{0}.$$

Projecting the query point **p** onto the same plane yields a 2-D problem:

$$\min_{\mathbf{t}}(\overline{\mathbf{p}}-\mathbf{r}(\mathbf{t})\mathbf{u}-\mathbf{s}(\mathbf{t})\mathbf{v})^2.$$

Setting the derivative of the distance function equal to zero, gives

$$f(t) = r(t)r'(t)\mathbf{u}^2 + s(t)s'(t)\mathbf{v}^2 - r'(t)\overline{\mathbf{p}}^T\mathbf{u} - s'(t)\overline{\mathbf{p}}^T\mathbf{v} = 0,$$

with $r' \equiv \frac{dr}{dt}$ and $s' \equiv \frac{ds}{dt}$.

Example 4 (Point vs Ellipse) For ellipses we have:

$$f(t) = \overline{\mathbf{p}}^{\mathsf{T}} \mathbf{v} t^4 + 2 [\overline{\mathbf{p}}^{\mathsf{T}} \mathbf{u} - (\mathbf{v}^2 - \mathbf{u}^2)] t^3 + 2 [\overline{\mathbf{p}}^{\mathsf{T}} \mathbf{u} + (\mathbf{v}^2 - \mathbf{u}^2)] t^2 - \overline{\mathbf{p}}^{\mathsf{T}} \mathbf{v} = \mathbf{0}.$$

The Curve-Curve Case

Given two conics P and Q, i.e.

P:
$$\mathbf{p}(t_1) = \mathbf{r}_1(t_1)\mathbf{u}_1 + \mathbf{s}_1(t_1)\mathbf{v}_1, \quad \mathbf{u}_1^{\mathsf{T}}\mathbf{v}_1 = \mathbf{0},$$

Q: $\mathbf{q}(t_2) = \mathbf{c}_2 + \mathbf{r}_2(t_2)\mathbf{u}_2 + \mathbf{s}_2(t_2)\mathbf{v}_2, \quad \mathbf{u}_2^{\mathsf{T}}\mathbf{v}_2 = \mathbf{0}.$

The partial derivatives of $\delta^2(t_1, t_2) = (\mathbf{q}(t_2) - \mathbf{p}(t_1))^2$ yield the following system of bivariate equations:

$$f(t_1, t_2) = [\mathbf{q}(t_2) - \mathbf{p}(t_1)]^T \left[-\frac{\partial r_1}{\partial t_1} \mathbf{u}_1 - \frac{\partial s_1}{\partial t_1} \mathbf{v}_1 \right] = 0,$$

$$g(t_1, t_2) = [\mathbf{q}(t_2) - \mathbf{p}(t_1)]^T \left[-\frac{\partial r_2}{\partial t_2} \mathbf{u}_2 + \frac{\partial s_2}{\partial t_2} \mathbf{v}_2 \right] = 0.$$

Example: Distance Between Two Ellipses

If P and Q are both ellipses, we can write our conditions as:

$$\begin{split} f(t_1,t_2) &= (1+t_1^2)f_1(t_1,t_2) + (1+t_2^2)f_2(t_1), \\ g(t_1,t_2) &= (1+t_1^2)g_1(t_2) + (1+t_2^2)g_2(t_1,t_2), \end{split}$$

where f_i and g_i , i = 1, 2, are polynomials of degrees at most 2 in t_1 and t_2 .

Example: Distance Between Two Ellipses

If P and Q are both ellipses, we can write our conditions as:

$$\begin{split} f(t_1,t_2) &= (1+t_1^2)f_1(t_1,t_2) + (1+t_2^2)f_2(t_1), \\ g(t_1,t_2) &= (1+t_1^2)g_1(t_2) + (1+t_2^2)g_2(t_1,t_2), \end{split}$$

where f_i and g_i , i = 1, 2, are polynomials of degrees at most 2 in t_1 and t_2 .

Observation 1

Every $(\xi_1, \xi_2) \in \{-i, i\}^2$ solves the bivariate system and hence, $(1 + t_1^2)^2$ is a factor of Res (f, g, t_2) .

Example: Distance Between Two Ellipses

If P and Q are both ellipses, we can write our conditions as:

$$\begin{split} f(t_1,t_2) &= (1+t_1^2)f_1(t_1,t_2) + (1+t_2^2)f_2(t_1), \\ g(t_1,t_2) &= (1+t_1^2)g_1(t_2) + (1+t_2^2)g_2(t_1,t_2), \end{split}$$

where f_i and g_i , i = 1, 2, are polynomials of degrees at most 2 in t_1 and t_2 .

Observation 1

Every $(\xi_1, \xi_2) \in \{-i, i\}^2$ solves the bivariate system and hence, $(1 + t_1^2)^2$ is a factor of Res (f, g, t_2) .

Proposition 4 (Degree Complexity)

The distance between two ellipses can be computed by solving polynomials of a degree of at most 16.

Proof.

The proposition follows from the fact that the mixed-volume of f and g bounds the degree of Res(f, g) by 20.

Summary: Point-Curve and Curve-Curve Cases

Point - Curve and Curve-Curve								
	Ellipse	Hyperbola	Parabola	Line				
Point	4	4	3	1				
Ellipse	16	16	12	4				
Hyperbola		16	12	4				
Parabola			9	3				
Line				1				

Natural Conics, Quadrics and the Torus

	Natural Conics			Natural Quadrics				Torus
	Point	Line	Circle	Plane	Sphere	C. Cylinder	C. Cone	Torus
Point	1	1	2	1	2	2	2	2
Line		1	4	1	2	2	2	4
Circle			8	2	2	4	8	8
Plane				1	1	1	2	2
Sphere					2	2	2	2
Circular						2	2	Δ
Cylinder						<u> </u>		Т
Circular							Δ	8
Cone							Т	0
Torus								8

Natural Conics, Quadrics and the Torus

	Natural Conics			Natural Quadrics				Torus
	Point	Line	Circle	Plane	Sphere	C. Cylinder	C. Cone	Torus
Point	1	1	2	1	2	2	2	2
Line		1	4	1	2	2	2	4
Circle			8	2	2	4	8	8
Plane				1	1	1	2	2
Sphere					2	2	2	2
Circular						2	2	Δ
Cylinder						<u> </u>		Т
Circular							Δ	8
Cone							Т	0
Torus								8

Remark 3 (Optimality)

It is shown in [Farouki,Neff,O'Connor89] that a degree of 8 is a lower bound on the degree complexity in the circle-circle case. Hence, it is proved that the upper bound result is strict for this special class of surfaces.