Distance Computation for Quadratic Complexes

Christian Lennerz

November 12, 2002

Conics, Quadrics and Quadratic Complexes

- Quadratic Complexes are polyhedra with faces embedded on quadrics and conics as edges.
- A quadric is given by an algebraic equation of degree 2:

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+2 \boldsymbol{a}^{T} \boldsymbol{x}+a_{0}=0\right\}
$$

for a vector $\boldsymbol{a} \in \mathbb{R}^{3}$ and symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{3 \times 3}$.

- A conic is explicitly given as the following point set:

$$
\left\{\boldsymbol{p} \in \mathbb{R}^{3} \mid \boldsymbol{p}=\boldsymbol{c}+r(t) \boldsymbol{u}+s(t) \boldsymbol{v}\right\}
$$

where $(r, s) \in\left\{(\sin , \cos),(\sinh , \cosh),(i d, 0),\left(i d\right.\right.$, id $\left.\left.^{2}\right)\right\}$ and $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{3}$ with $\boldsymbol{u}^{T} \boldsymbol{v}=0$.

Examples of Quadrics

Quadratic Complexes in CAD I

Filleting

Revolving

Tubing

Quadratic Complexes in CAD II

Boolean Operations (Union)

Normal Forms of Quadrics

Central Surfaces: $\operatorname{det}(\boldsymbol{A}) \neq 0$

Ellipsoids / Hyperboloids	$\boldsymbol{a}=\mathbf{0}$	$a_{0} \neq 0$
Cone	$\boldsymbol{a}=\mathbf{0}$	$a_{0}=0$

Non-Central Surfaces: $\operatorname{det}(\boldsymbol{A})=0$

Paraboloids	$A_{3}=0$	$a_{3} \neq 0$	$a_{0}=0$
Elliptical /Hyperbolical Cylinder	$A_{3}=0$	$\boldsymbol{a}=\mathbf{0}$	$a_{0} \neq 0$
Parabolical Cylinder	$A_{1}=A_{3}=0$	$a_{1} \neq 0$	$a_{0}=0$

The Distance Computation Problem

Definition 1. Given two quadratic complexes C_{1}, C_{2}. The distance computation problem is to determine the global minimum of the distance function δ between the respective point sets, together with a pair of witness points i.e.
(i) the value $\delta^{*}:=\delta\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right)$,
(ii) a pair of points $(\boldsymbol{p}, \boldsymbol{q})$, s.t. $\delta^{*}=\delta(\boldsymbol{p}, \boldsymbol{q})$,
where δ denotes the EUCLIDEAN distance function between two points or set of points respectively.

Closest Points Between Faces

Let F_{1} and F_{2} be disjoint faces of Quadratic Complexes that are embedded on the quadratic surfaces Q_{1} and Q_{2}, where

$$
\begin{aligned}
Q_{1} & :=\left\{\boldsymbol{x} \mid \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+2 \boldsymbol{a}^{T} \boldsymbol{x}+a_{0}=0\right\}, \\
Q_{2} & :=\left\{\boldsymbol{y} \mid \boldsymbol{y}^{T} \boldsymbol{B} \boldsymbol{y}+2 \boldsymbol{b}^{T} \boldsymbol{y}+b_{0}=0\right\} .
\end{aligned}
$$

If $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$ is a pair of closest points between F_{1} and F_{2}, then either
(i) $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$ is an extremum of the quadratic distance function between Q_{1} and Q_{2} i.e. there are $\alpha, \beta \in \mathbb{R}, \alpha, \beta \neq 0$ s.t.

$$
\boldsymbol{n}\left(\boldsymbol{p}_{1}\right)=\alpha\left(\boldsymbol{p}_{2}-\boldsymbol{p}_{1}\right) \quad \boldsymbol{n}\left(\boldsymbol{p}_{2}\right)=\beta\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right),
$$

where $\boldsymbol{n}\left(\boldsymbol{p}_{i}\right)$ denotes the normal of Q_{i} in \boldsymbol{p}_{i}, or
(ii) \boldsymbol{p}_{1}, or \boldsymbol{p}_{2} lies on the boundary of the face F_{1} or F_{2}, respectively.

$f_{1} \cap f_{2} \neq \emptyset$: Precondition violated.

A Generic Algorithm

Input: Entities E_{1} and E_{2} of type face, edge or vertex.
Output: $\delta\left(E_{1}, E_{2}\right)$ and a pair of closest points $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$.
EntityDistance(E_{1}, E_{2})
(1) $\quad\left[\right.$ isDisjoint, $\left.\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)\right] \leftarrow \operatorname{INTERSECT}\left(E_{1}, E_{2}\right)$
(2) if isDisjoint $=$ false
(3) return $\left[0,\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)\right]$
(4) $\quad \delta_{G} \leftarrow \infty$
(5) \quad while $\left[\delta,\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)\right] \leftarrow \operatorname{Extrema}\left(E_{1}, E_{2}\right)$
(6) if $\left(\boldsymbol{q}_{1} \in E_{1}\right)$ and $\left(\boldsymbol{q}_{2} \in E_{2}\right)$
(7)
(8)
if $\delta<\delta_{G}$
$\delta_{G} \leftarrow \delta, \quad\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \leftarrow\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)$
(9)
if E_{1} is not a vertex
foreach subentity E of E_{1}
(14) if E_{2} is not a vertex
(15) foreach subentity E of E_{2}
(16)
$\left[\delta,\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)\right] \leftarrow$ EntityDistance $\left(E_{1}, E\right)$
(17)
(18)
if $\delta<\delta_{G}$
$\delta_{G} \leftarrow \delta, \quad\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \leftarrow\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)$
(19) return $\left[\delta_{G},\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)\right]$

Main Result

Theorem 1. The distance between two faces of quadratic complexes can be computed by solving systems of univariate and bivariate polynomials in which the degree of every variable is at most 6 . These systems can be solved by finding the roots of univariate polynomials of degree at most 24.

Our Approach

The Point-Surface Case

The Lagrange formalism for the point-surface problem, gives

$$
\begin{aligned}
& \mathcal{L}(\boldsymbol{x} ; \alpha)=(\boldsymbol{x}-\boldsymbol{p})^{2}+\alpha\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+2 \boldsymbol{a}^{T} \boldsymbol{x}+a_{0}\right), \\
& \frac{\partial \mathcal{L}(.)}{\partial \boldsymbol{x}}=0 \Longleftrightarrow \alpha(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{a})=\boldsymbol{p}-\boldsymbol{x}, \\
& \frac{\partial \mathcal{L}(.)}{\partial \alpha}=0 \Longleftrightarrow \boldsymbol{x}^{T} A \boldsymbol{x}+2 \boldsymbol{a}^{T} \boldsymbol{x}+a_{0}=0 .
\end{aligned}
$$

From the first LAGRANGE-condition, we can derive:

$$
\boldsymbol{x}=(\boldsymbol{E}+\alpha \boldsymbol{A})^{-1}(\boldsymbol{p}-\alpha \boldsymbol{a})=: \boldsymbol{D}_{\alpha}^{-1} \boldsymbol{p}_{\alpha} .
$$

Substituting x in the second equation gives the univariate system:

$$
f(\alpha)=\boldsymbol{p}_{\alpha}^{T} \overline{\boldsymbol{D}}_{\alpha} \boldsymbol{A} \overline{\boldsymbol{D}}_{\alpha} \boldsymbol{p}_{\alpha}+2 \boldsymbol{a}^{T} \overline{\boldsymbol{D}}_{\alpha} \boldsymbol{p}_{\alpha} \boldsymbol{a}\left|\boldsymbol{D}_{\alpha}\right|+a_{0}\left|\boldsymbol{D}_{\alpha}\right|^{2}=0 .
$$

Examples

$$
\begin{aligned}
f(\alpha)= & A_{1} p_{\alpha 1}^{2} d_{2}^{2} d_{3}^{2}+A_{2} p_{\alpha 2}^{2} d_{1}^{2} d_{3}^{2}+A_{3} p_{\alpha 3}^{2} d_{1}^{2} d_{2}^{2}+a_{0} d_{1}^{2} d_{2}^{2} d_{3}^{2}+ \\
& 2\left(a_{1} p_{\alpha 1} d_{1} d_{2}^{2} d_{3}^{2}+a_{2} p_{\alpha 2} d_{1}^{2} d_{2} d_{3}^{2}+a_{3} p_{\alpha 3} d_{1}^{2} d_{2}^{2} d_{3}\right)=0
\end{aligned}
$$

Central Surfaces:

Ellipsoid / Hyperboloid: $\boldsymbol{a}=\mathbf{0} \Rightarrow \boldsymbol{p}_{\alpha}=\boldsymbol{p}$

$$
f(\alpha)=A_{1} p_{1}^{2} d_{2}^{2} d_{3}^{2}+A_{2} p_{2}^{2} d_{1}^{2} d_{3}^{2}+A_{3} p_{3}^{2} d_{1}^{2} d_{2}^{2}+a_{0} d_{1}^{2} d_{2}^{2} d_{3}^{2}=0
$$

Non-Central Surfaces:

Paraboloids:

$$
A_{3}=0, a_{1}=a_{2}=0, a_{0}=0 \Rightarrow d_{3}=1, p_{\alpha 1}=p_{1}, p_{\alpha 2}=p_{2}
$$

$$
f(\alpha)=A_{1} p_{1}^{2} d_{2}^{2}+A_{2} p_{2}^{2} d_{1}^{2}+2 a_{3} p_{\alpha 3} d_{1}^{2} d_{2}^{2}=0
$$

Summary: Point-Surface-Case

Point - Central Surface		
Ellipsoid	Hyperboloid	Cone
6	6	4

Point - Non-Central Surface		
Paraboloids	Elliptical / Hyperbolical Cylinders	Parabolical Cylinder
5	4	3

The Curve-Surface Case

If we substitute p by the explicit representation of a conic, i.e.

$$
P: \quad \boldsymbol{p}(t)=c+r(t) \boldsymbol{u}+s(t) \boldsymbol{v} .
$$

then we get a third LAGRANGE-condition

$$
\frac{\partial \mathcal{L}(.)}{\partial t}=0 \quad \Longleftrightarrow \quad(\boldsymbol{x}-\boldsymbol{p})^{T} \frac{\partial \boldsymbol{p}}{\partial t}=0
$$

and in contrast to the point-surface case a bivariate system of equations:

$$
\begin{aligned}
f(\alpha, t) & =\boldsymbol{p}_{\alpha}^{T} \overline{\boldsymbol{D}}_{\alpha} \boldsymbol{A} \overline{\boldsymbol{D}}_{\alpha} \boldsymbol{p}_{\alpha}+2 \boldsymbol{a}^{T} \overline{\boldsymbol{D}}_{\alpha} \boldsymbol{p}_{\alpha} \boldsymbol{a}\left|\boldsymbol{D}_{\alpha}\right|+a_{0}\left|\boldsymbol{D}_{\alpha}\right|^{2}=0, \\
g(\alpha, t) & =\left(\overline{\boldsymbol{D}}_{\alpha} \boldsymbol{p}_{\alpha}-\left|\boldsymbol{D}_{\alpha}\right| \boldsymbol{p}\right) \frac{\partial \boldsymbol{p}}{\partial t}=0 .
\end{aligned}
$$

Example: Central Surfaces

$$
\begin{aligned}
f(\alpha, t) & =A_{1} p_{1}^{2} d_{2}^{2} d_{3}^{2}+A_{2} p_{2}^{2} d_{1}^{2} d_{3}^{2}+A_{3} p_{3}^{2} d_{1}^{2} d_{2}^{2}+a_{0} d_{1}^{2} d_{2}^{2} d_{3}^{2}=0 \\
g(\alpha, t) & =A_{1} p_{1} p_{1}^{\prime} d_{2} d_{3}+A_{2} p_{2} p_{2}^{\prime} d_{1} d_{3}+A_{3} p_{3} p_{3}^{\prime} d_{1} d_{2}
\end{aligned}=0 .
$$

	Ellipse	Hyperbola	Parabola	Line	
$r(t), s(t)$	$\frac{1-t^{2}}{1+t^{2}}$	$\frac{2 t}{1+t^{2}}$	$\frac{1+t^{2}}{1-t^{2}}$	$\frac{2 t}{1-t^{2}}$	$t \quad t^{2}$
$\operatorname{deg}(f, \alpha)$	6	6	6	0	
$\operatorname{deg}(f, t)$	4	4	4	6	
$\operatorname{deg}(f, \alpha, t)$	10	10	10	8	
$\operatorname{deg}(g, \alpha)$	2	2	2	2	
$\operatorname{deg}(g, t)$	4	4	3	1	
$\operatorname{deg}(g, \alpha, t)$	6	6	5	3	

Factorization of the Resultant Polynomial I

Lemma 1. Let $f=g=0$ be our system of equations, i.e.

$$
\begin{aligned}
& f(\alpha, t)=A_{1} p_{1}^{2} d_{2}^{2} d_{3}^{2}+A_{2} p_{2}^{2} d_{1}^{2} d_{3}^{2}+A_{3} p_{3}^{2} d_{1}^{2} d_{2}^{2}+a_{0} d_{1}^{2} d_{2}^{2} d_{3}^{2}=0, \\
& g(\alpha, t)=A_{1} p_{1} p_{1}^{\prime} d_{2} d_{3}+A_{2} p_{2} p_{2}^{\prime} d_{1} d_{3}+A_{3} p_{3} p_{3}^{\prime} d_{1} d_{2}=0 .
\end{aligned}
$$

and let α_{i} denote the root of $d_{i}, i=1,2,3$. Then
(i) The pair $\left(\alpha_{i}, t_{i}\right)$ is a solution of the bivariate system for every t_{i} solving the equation $p_{i}=0, i=1,2,3$,
(ii) If the curve is not a line, every α_{i} is a root of multiplicity 4 in $\operatorname{Res}(f, g, t)$ whereas every t_{i} has multiplicity 2 in $\operatorname{Res}(f, g, \alpha)$.

Factorization of the Resultant Polynomial II

Corollary 1. If the curve is not a line, the Resultant Polynomial can be written as the following product:

$$
\begin{aligned}
\operatorname{Res}(f, g, t) & =h_{\alpha} \prod_{i=1}^{3} d_{i}^{4}=h_{\alpha} \prod_{i=1}^{3}\left(\alpha-\alpha_{i}\right)^{4} \\
\operatorname{Res}(f, g, \alpha) & =h_{t} \prod_{i=1}^{3} p_{i}^{2}=h_{t} \prod_{i=1}^{3}\left(t-t_{i 1}\right)^{2}\left(t-t_{i 2}\right)^{2}
\end{aligned}
$$

where h_{α} and h_{t} are univariate polynomials of degree at most 20 .

Summary: Curve - Central-Surface Case

	Ellipsoid	Hyperboloids	Cone
Ellipse	20	20	12
Hyperbola	20	20	12
Parabola	14	14	8
Line	4	4	2

Summary: Curve - Non-Central-Surface Case

	Paraboloids	Elliptical / Hyperbolical Cylinders	Parabolical Cylinder
Ellipse	16	12	8
Hyperbola	16	12	8
Parabola	11	8	5
Line	3	2	1

The Surface-Surface Case

By setting up the LAGRANGE formalism for the problem

$$
\min (\boldsymbol{x}-\boldsymbol{y})^{2}, \quad \boldsymbol{x} \in Q_{1}, \boldsymbol{y} \in Q_{2}
$$

we get the LAGRANGE function \mathcal{L} and -conditions $(i), \ldots,(i v)$:

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{x}, \boldsymbol{y} ; \alpha, \beta)=(\boldsymbol{x}-\boldsymbol{y})^{2} & +\alpha\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+2 \boldsymbol{a}^{T} \boldsymbol{x}+a_{0}\right) \\
& +\beta\left(\boldsymbol{y}^{T} \boldsymbol{B} \boldsymbol{y}+2 \boldsymbol{b}^{T} \boldsymbol{y}+b_{0}\right)
\end{aligned}
$$

$$
\text { (i) } \partial \frac{\mathcal{L}(\cdot)}{\partial \boldsymbol{x}}=0 \Longleftrightarrow \alpha(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{a})=\boldsymbol{y}-\boldsymbol{x}
$$

$$
\text { (ii) } \partial \frac{\mathcal{L}(\cdot)}{\partial \boldsymbol{y}}=0 \quad \Longleftrightarrow \quad \beta(\boldsymbol{B} \boldsymbol{y}+\boldsymbol{b})=\boldsymbol{x}-\boldsymbol{y}
$$

$$
\text { (iii) } \partial \frac{\mathcal{L L}(.)}{\partial \alpha}=0 \quad \Longleftrightarrow \boldsymbol{x}^{T} A \boldsymbol{x}+2 \boldsymbol{a}^{T} \boldsymbol{x}+a_{0}=0
$$

$$
\text { (iv) } \quad \partial \frac{\mathcal{L}(.)}{\partial \beta}=0 \quad \Longleftrightarrow \boldsymbol{y}^{T} B \boldsymbol{y}+2 \boldsymbol{b}^{T} \boldsymbol{y}+b_{0}=0
$$

Solving The Lagrange System

By setting $\lambda:=1 / \alpha$ and $\mu:=1 / \beta$ we can derive from (i) and ($i i$):

$$
\begin{aligned}
& \boldsymbol{x}=-(\boldsymbol{B} \boldsymbol{A}+\lambda \boldsymbol{B}+\mu \boldsymbol{A})^{-1}(\boldsymbol{B} \boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{a})=:-\frac{\overline{\boldsymbol{C}}_{\lambda, \mu}}{\left|\boldsymbol{C}_{\lambda, \mu}\right|} \boldsymbol{c}_{B}, \\
& \boldsymbol{y}=-(\boldsymbol{A} \boldsymbol{B}+\lambda \boldsymbol{B}+\mu \boldsymbol{A})^{-1}(\boldsymbol{A} \boldsymbol{b}+\lambda \boldsymbol{b}+\mu \boldsymbol{a})=:-\frac{\overline{\boldsymbol{C}}_{\lambda, \mu}^{T}}{\left|\boldsymbol{C}_{\lambda, \mu}\right|} \boldsymbol{c}_{A},
\end{aligned}
$$

where $\overline{\boldsymbol{C}}_{\lambda, \mu}$ denotes the adjoint and $\left|\boldsymbol{C}_{\lambda, \mu}\right|$ the determinant of $\boldsymbol{C}_{\lambda, \mu}$.
Substituting \boldsymbol{x} and \boldsymbol{y} in (iii) and (iv) we get the system:
$f(\lambda, \mu)=\boldsymbol{c}_{B}^{T} \overline{\boldsymbol{C}}_{\lambda, \mu}^{T} \boldsymbol{A} \overline{\boldsymbol{C}}_{\lambda, \mu} \boldsymbol{c}_{B}-2\left|\boldsymbol{C}_{\lambda, \mu}\right| \boldsymbol{a}^{T} \overline{\boldsymbol{C}}_{\lambda, \mu} \boldsymbol{c}_{B}+a_{0}\left|\boldsymbol{C}_{\lambda, \mu}\right|^{2}=0$,
$g(\lambda, \mu)=\boldsymbol{c}_{A}^{T} \overline{\boldsymbol{C}}_{\lambda, \mu} \boldsymbol{B} \overline{\boldsymbol{C}}_{\lambda, \mu}^{T} \boldsymbol{c}_{A}-2\left|\boldsymbol{C}_{\lambda, \mu}\right| \boldsymbol{b}^{T} \overline{\boldsymbol{C}}_{\lambda, \mu}^{T} \boldsymbol{c}_{A}+b_{0}\left|\boldsymbol{C}_{\lambda, \mu}\right|^{2}=0$,

The Inverse of $C_{\lambda, \mu}$

Proposition 1. The adjoint and determinant of
$\boldsymbol{C}_{\lambda, \mu}=\boldsymbol{B} \boldsymbol{A}+\lambda \boldsymbol{B}+\mu \boldsymbol{A}$ is given by

$$
\begin{aligned}
\overline{\boldsymbol{C}_{\lambda, \mu}}= & \overline{\boldsymbol{B}} \lambda^{2}+\overline{\boldsymbol{A}} \mu^{2}+\boldsymbol{T}_{A} \overline{\boldsymbol{B}} \lambda+\overline{\boldsymbol{A}} \boldsymbol{T}_{B} \mu+\left(\boldsymbol{T}_{B} \boldsymbol{T}_{A}-\boldsymbol{T}_{A B}\right) \lambda \mu+\overline{\boldsymbol{A}} \overline{\boldsymbol{B}}, \\
\left|\boldsymbol{C}_{\lambda, \mu}\right|= & |\boldsymbol{B}| \lambda^{3}+|\boldsymbol{A}| \mu^{3}+|\boldsymbol{B}| \operatorname{tr}(\boldsymbol{A}) \lambda^{2}+|\boldsymbol{A}| \operatorname{tr}(\boldsymbol{B}) \mu^{2}+ \\
& |\boldsymbol{B}| \operatorname{tr}(\overline{\boldsymbol{A}}) \lambda+|\boldsymbol{A}| \operatorname{tr}(\overline{\boldsymbol{B}}) \mu+\operatorname{tr}(\overline{\boldsymbol{B}} \boldsymbol{A}) \lambda^{2} \mu+\operatorname{tr}(\overline{\boldsymbol{A}} \boldsymbol{B}) \lambda \mu^{2}+ \\
& (\operatorname{tr}(\overline{\boldsymbol{A}}) \operatorname{tr}(\overline{\boldsymbol{B}})-\operatorname{tr}(\overline{\boldsymbol{A}} \overline{\boldsymbol{B}})) \lambda \mu+|\boldsymbol{A}||\boldsymbol{B}|, \\
\text { where } \boldsymbol{T}_{M}:= & \operatorname{tr}(\boldsymbol{M}) \boldsymbol{E}-\boldsymbol{M} \text { for a matrix } \boldsymbol{M} \in \mathbb{R}^{3 \times 3} .
\end{aligned}
$$

Corollary 2. The polynomials f and g have degree 6 in λ as well as μ. Moreover the total degree of f and g is also 6 .
Corollary 3. (Bezout): The degree of $\operatorname{Res}(f, g)$ is at most 36 .

Factorization of the Resultant Polynomial

Conjecture 1. Let $f=g=0$ be our system of polynomial equations, i.e.
$f(\lambda, \mu)=\boldsymbol{c}_{B}^{T} \overline{\boldsymbol{C}}_{\lambda, \mu}^{T} \boldsymbol{A} \overline{\boldsymbol{C}}_{\lambda, \mu} \boldsymbol{c}_{B}-2\left|\boldsymbol{C}_{\lambda, \mu}\right| \boldsymbol{a}^{T} \overline{\boldsymbol{C}}_{\lambda, \mu} \boldsymbol{c}_{B}+a_{0}\left|\boldsymbol{C}_{\lambda, \mu}\right|^{2}=0$,
$g(\lambda, \mu)=\boldsymbol{c}_{A}^{T} \overline{\boldsymbol{C}}_{\lambda, \mu} \boldsymbol{B} \overline{\boldsymbol{C}}_{\lambda, \mu}^{T} \boldsymbol{c}_{A}-2\left|\boldsymbol{C}_{\lambda, \mu}\right| \boldsymbol{b}^{T} \overline{\boldsymbol{C}}_{\lambda, \mu}^{T} \boldsymbol{c}_{A}+b_{0}\left|\boldsymbol{C}_{\lambda, \mu}\right|^{2}=0$,
and the system h be defined as follows:

$$
\boldsymbol{h}(\lambda, \mu):=\left(h_{1}, h_{2}, h_{3}\right)^{T}=\overline{\boldsymbol{C}}_{\lambda, \mu} \boldsymbol{c}_{B}-\overline{\boldsymbol{C}}_{\lambda, \mu}^{T} \boldsymbol{c}_{A}=\mathbf{0} .
$$

Then the common roots of the polynomials $r_{i j}:=\operatorname{Res}\left(h_{i}, h_{j}\right)$, $1 \leq i<j \leq 3$, define a polynomial p that divides $\operatorname{Res}(f, g)$.

Remark: Sufficient to solve p and $\operatorname{Res}(f, g) / p$ of degree ≤ 24.

Tangential Intersection Points

Observation 1. The tangential intersection points between Q_{1} and Q_{2} do fullfill the LAGRANGE conditions (i), ..., (iv).

We conject that that they can be determined by setting $\boldsymbol{x}=\boldsymbol{y}$, i.e. by solving the following bivariate system:

$$
\begin{aligned}
\boldsymbol{h}(\lambda, \mu)= & \overline{\boldsymbol{C}}_{\lambda, \mu} \boldsymbol{c}_{B}-\overline{\boldsymbol{C}}_{\lambda, \mu}^{T} \boldsymbol{c}_{A} \\
= & (|\boldsymbol{B}| \boldsymbol{a}-\boldsymbol{A} \overline{\boldsymbol{B}} \boldsymbol{b}) \lambda^{2}+(\boldsymbol{B} \overline{\boldsymbol{A}} \boldsymbol{a}-|\boldsymbol{A}| \boldsymbol{b}) \mu^{2}+ \\
& \left(|\boldsymbol{B}| \boldsymbol{T}_{A} \boldsymbol{a}-\boldsymbol{T}_{\bar{A}} \overline{\boldsymbol{B}} \boldsymbol{b}\right) \lambda+\left(\boldsymbol{T}_{\bar{B}} \overline{\boldsymbol{A}} \boldsymbol{a}-|\boldsymbol{A}| \boldsymbol{T}_{B} \boldsymbol{b}\right) \mu+ \\
& \left(\boldsymbol{T}_{A \bar{B}} \boldsymbol{a}-\boldsymbol{T}_{B \bar{A}} \boldsymbol{b}\right) \lambda \mu+|\boldsymbol{B}| \overline{\boldsymbol{A}} \boldsymbol{a}-|\boldsymbol{A}| \overline{\boldsymbol{B}} \boldsymbol{b} .
\end{aligned}
$$

Summary: Surface-Surface Case

	Central Surfaces		Non-Central Surfaces		
	$a_{0} \neq 0$	$a_{0}=0$	$\boldsymbol{a} \neq \mathbf{0}$	$\boldsymbol{a}=\mathbf{0}$	$\operatorname{rg} \boldsymbol{A}=1$
$a_{0} \neq 0$	24	12	18	12	8
$a_{0}=0$		4	8	4	2
$\boldsymbol{a} \neq \mathbf{0}$			13	8	5
$\boldsymbol{a}=\mathbf{0}$				4	2

The Point-Curve Case

W.I.o.g. we can assume that the conic Q is embedded on the $x_{1}-x_{2}$-plane and centered around the origin, i.e.

$$
Q: \quad \boldsymbol{q}(t)=r(t) \boldsymbol{u}+s(t) \boldsymbol{v}, \quad \boldsymbol{u}^{T} \boldsymbol{v}=0
$$

Projecting the query point p onto the same plane yields a 2-D problem:

$$
\min _{t}(\overline{\boldsymbol{p}}-r(t) \boldsymbol{u}-s(t) \boldsymbol{v})^{2}
$$

Setting the derivative of the distance function equal to zero, gives

$$
f(t)=r r^{\prime} \boldsymbol{u}^{2}+s s^{\prime} \boldsymbol{v}^{2}-r^{\prime} \overline{\boldsymbol{p}}^{T} \boldsymbol{u}-s^{\prime} \overline{\boldsymbol{p}}^{T} \boldsymbol{v}=0,
$$

with $r^{\prime} \equiv \frac{d r}{d t}$ and $s^{\prime} \equiv \frac{d s}{d t}$.

The Curve-Curve Case

Given two conics P and Q, i.e.

$$
\begin{array}{lll}
P: & \boldsymbol{p}(t)=r_{1}\left(t_{1}\right) \boldsymbol{u}_{1}+s_{1}\left(t_{1}\right) \boldsymbol{v}_{1}, & \\
Q: & \boldsymbol{u}(t)=\boldsymbol{u}_{1}^{T} \boldsymbol{v}_{1}=r_{2}\left(t_{2}\right) \boldsymbol{u}_{2}+s_{2}\left(t_{2}\right) \boldsymbol{v}_{2}, & \boldsymbol{u}_{2}^{T} \boldsymbol{v}_{2}=0 .
\end{array}
$$

The partial derivatives of $\delta^{2}\left(t_{1}, t_{2}\right)=\left(\boldsymbol{q}\left(t_{2}\right)-\boldsymbol{p}\left(t_{1}\right)\right)^{2}$ yield the following system of bivariate equations:

$$
\begin{aligned}
& f\left(t_{1}, t_{2}\right)=\left[\boldsymbol{q}\left(t_{2}\right)-\boldsymbol{p}\left(t_{1}\right)\right]^{T}\left[-\frac{\partial r_{1}}{\partial t_{1}} \boldsymbol{u}_{1}-\frac{\partial s_{1}}{\partial t_{1}} \boldsymbol{v}_{1}\right]=0, \\
& g\left(t_{1}, t_{2}\right)=\left[\boldsymbol{q}\left(t_{2}\right)-\boldsymbol{p}\left(t_{1}\right)\right]^{T}\left[\frac{\partial r_{2}}{\partial t_{2}} \boldsymbol{u}_{2}+\frac{\partial s_{2}}{\partial t_{2}} \boldsymbol{v}_{2}\right]=0 .
\end{aligned}
$$

Example: Distance Between Two Ellipses

Proposition 2. The distance between two ellipses can be computed by solving polynomials of degree at most 16 .

Proof. If P and Q are both ellipses, we can write our conditions as:

$$
\begin{aligned}
f\left(t_{1}, t_{2}\right) & =\left(1+t_{1}^{2}\right) f_{1}\left(t_{1}, t_{2}\right)+\left(1+t_{2}^{2}\right) f_{2}\left(t_{1}\right) \\
& =\left(t_{1}+i\right)\left(t_{1}-i\right) f_{1}\left(t_{1}, t_{2}\right)+\left(t_{2}+i\right)\left(t_{2}-i\right) f_{2}\left(t_{1}\right) \\
g\left(t_{1}, t_{2}\right) & =\left(1+t_{1}^{2}\right) g_{1}\left(t_{2}\right)+\left(1+t_{2}^{2}\right) g_{2}\left(t_{1}, t_{2}\right) \\
& =\left(t_{1}+i\right)\left(t_{1}-i\right) g_{1}\left(t_{2}\right)+\left(t_{2}+i\right)\left(t_{2}-i\right) g_{2}\left(t_{1}, t_{2}\right)
\end{aligned}
$$

with polynomials f_{i} and $g_{i}, i=1,2$, of degrees at most 2 in t_{1} and t_{2}. Since every $\left(\xi_{1}, \xi_{2}\right) \in\{-i, i\}^{2}$ solves the bivariate system, $\left(1+t_{1}^{2}\right)^{2}$ is a factor of $\operatorname{Res}\left(f, g, t_{2}\right)$, whose degree is bounded by 20 (mixed-volume function).

Summary: Curve-Curve Case

	Ellipse	Hyberbola	Parabola	Line
Ellipse	16	16	12	4
Hyperbola		16	12	4
Parabola			9	3
Line				1

Natural Conics, Quadrics and the Torus

Natural Conics: Lines, Circles

Natural Quadrics: Planes, Spheres, Cylinders

Theorem 2. The distance between two faces embedded on natural quadrics or the torus and trimmend by natural conics can be computed by solving univariate polynomials of degree at most 8 .

