Finding Roots of Polynomials

Christian Lennerz

12th November 2002

Roots of Polynomials

Roots of Polynomials in One Variable

Definition

A polynomial P in one variable x with complex coefficients is a function, given by

$$
P(x)=\sum_{i=0}^{n} a_{i} x^{i},
$$

where a_{0}, \ldots, a_{n} are complex numbers with $a_{n} \neq 0$.

Observation

In general a the roots can be real or complex, single or multiple...

Theorem 1

If all coefficients of P are real numbers, then the complex roots occur in pairs that are conjugate and both roots have the same multiplicity.

Finding Roots by Polynomial Deflation

Theorem 2
Every polynomial P of degree n with complex coefficients and $a_{n} \neq 0$ has the following product representation:

$$
P(x)=a_{n}\left(x-\xi_{1}\right)\left(x-\xi_{2}\right) \cdots\left(x-\xi_{n}\right),
$$

where ξ_{1}, \ldots, ξ_{n} are the roots of P.
Idea (Successive Deflation of P)
Given a root ξ_{i} of $P, 1 \leq i \leq n$, the polynomial can be factored into the following product:

$$
P(x)=\left(x-\xi_{i}\right) Q(x) .
$$

Then the following properties hold:

1. The reduced polynomial Q has degree one less than P.
2. The roots of Q are exactly the remaining roots of P.

Remarks

- Deflation is simply polynomial division.
- The effort of finding a root hopefully decreases in each step.
- The method cannot converge twice to the same non multiple root.
- Roots become more and more inaccurate, when not polished up.
- Successive Deflation is numerical stable, if the root of smallest absolute value is divided out in each step.
- In our context, we don't need complex arithmetics:

$$
[x-(a+b i)] \cdot[x-(a-b i)]=x^{2}-2 a x+a^{2}+b^{2} \in \mathbb{R} .
$$

Bracketing

Definition

A root is bracketed in the interval (a, b) if $f(a)$ and $f(b)$ have different signs.

Motivation

According to the Intermediate Value
Theorem there must be at least one root in (a, b), unless a singularity is present.

Remark

With standard arithmetic there is no sure way of bracketing all roots of an arbitrary function:

$$
f(x)=3 x^{2}+\frac{1}{\pi^{4}} \ln \left[(\pi-x)^{2}\right]+1
$$

dips below zero only in the interval $\pi \pm 10^{-667}$.

Bisection

Idea

- Precondition: A bracketed range is given as starting point.
- Evaluate the function at the midpoint of the interval and examine its sign.
- Use the midpoint to replace whichever limit has the same sign.

Remarks

- The method converges linearly because the width of the bracketed range decreases by a factor of two after each iteration.
- If the interval contains two or more roots, the method will find only one of them.
- The method does not distinguish singularities from roots.

Regula Falsi and Secant Method

Assumption

The function is approximately linear in the local region of interest.

Idea

- Evaluate the function at the point where the line through both interval limits crosses the axis.
- Secant Method: Retain the most recent of the prior estimates and replace the other by the new estimate.
- Regula Falsi Method: Retain the prior estimate for which the function value has opposite sign from the current estimate of the root.

Example

Secant Method

Regula Falsi Method

Conclusions

- Secant Method:
- The root does not always remain bracketed. There is no convergence guaranty.
- Near the root of a sufficient continous function the convergence order is the "golden ratio" 1.618....
- Regula Falsi Method:
- Convergence can be guaranteed since the root remains bracketed.
- Convergence order is lower as in the case of the Secant Method.

Improvements

- Ridder's Method: Variant of the Regula Falsi Method that uses exponential instead of linear interpolation.
- Brent's Method: Combines Secant Method, Bisection and quadratic interpolation.
- Muller's Method: Generalization of the Secant Method using quadratic interpolation.

LAGUERRE's Method

Main Idea

- The root ξ_{1} that we seek is assumed to be some distance a from a our current guess $\hat{\xi}_{1}$.
- All other roots are assumed to be located at a distance b.
- Use the polynomial $P, P^{\prime}, P^{\prime \prime}$ to solve for a, then take $\hat{\xi}_{1}-a$ as the next guess.
- Continue this process until a becomes small enough.

Some Details

Remember the following relations between P and its derivatives:

$$
\begin{aligned}
P(x) & =\prod_{i=1}^{n}\left(x-\xi_{i}\right) \\
Q(x) & :=\frac{P^{\prime}(x)}{P(x)}=\sum_{i=1}^{n} \frac{1}{x-\xi_{i}} \\
R(x) & :=\left[\frac{P^{\prime}(x)}{P(x)}\right]^{2}-\frac{P^{\prime \prime}(x)}{P(x)}=\sum_{i=1}^{n} \frac{1}{\left(x-\xi_{i}\right)^{2}}
\end{aligned}
$$

Using our "rather drastic set of assumptions"

$$
\xi_{1}=\hat{\xi}_{1}-a, \quad \xi_{i}=\hat{\xi}_{1}-b, \quad 2 \leq i \leq n .
$$

we obtain for $Q\left(\hat{\xi}_{1}\right)$ and $R\left(\hat{\xi}_{1}\right)$:

$$
Q\left(\hat{\xi}_{1}\right)=\frac{1}{a}+\frac{n-1}{b} \quad R\left(\hat{\xi}_{1}\right)=\frac{1}{a^{2}}+\frac{n-1}{b^{2}} .
$$

Solving for a leads to:

$$
a=\frac{n}{Q\left(\hat{\xi}_{1}\right) \pm \sqrt{(n-1)\left(n R\left(\hat{\xi}_{1}\right)-Q\left(\hat{\xi}_{1}\right)^{2}\right.}}
$$

Remarks

- There are two possibilities for a. Take the sign, such that a is minimal.
- For polynomials with all real roots the method is guaranteed to converge to a root for any starting point.
- For polynomials with some complex roots convergence cannot be guaranteed.
- When the method converges to a simple complex root the convergence is third order.
- The method requires complex arithmetic, even while converging to real roots.

Eigenvalue Methods

Facts

- The eigenvalues of a matrix A are the roots of the characteristic polynomial

$$
Q_{A}(x)=\operatorname{det}(A-x I) .
$$

- There are efficient and numerical stable non-root-finding methods to compute the eigenvalues of a matrix.

Question

Is it possible to reduce the polynomial root-finding problem to the problem of computing the eigenvalues of a matrix ?

Answer

The characteristic polynomial of the following companion matrix
$A=\left(\begin{array}{ccccc}-\frac{a_{n-1}}{a_{n}} & -\frac{a_{n-2}}{a_{n}} & \cdots & -\frac{a_{1}}{a_{n}} & -\frac{a_{0}}{a_{n}} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & 0\end{array}\right)$
has the same roots as the polynomial

$$
P(x)=\sum_{i=0}^{n} a_{i} x^{i} .
$$

Proof

Expansion by the first row gives us

$$
Q_{A}(x)=\operatorname{det}(A-x I)=(-1)^{n} \sum_{i=0}^{n} \frac{a_{i}}{a_{n}} x^{i} .
$$

Remarks

- The eigenvalues can be computed using the $Q R$-Algorithm, an efficient eigenvalue method when the input is an upper Hessenberg matrix.
- Advantage:

More robust technique than LAGUERRE's Method.

- Disadvantage:

Typically a factor 2 slower than LAGUERRE's Method.

Simultaneous Inclusion of Real Roots

Given: $\quad P(x)=\sum_{i=0}^{n} a_{i} x^{i}, \quad a_{n}=1$

Assumptions

1. P has n real roots $\xi=\left(\xi^{(1)}, \ldots, \xi^{(n)}\right)$, where multiple roots are entered according to their multiplicity.
2. We collect multiple roots as $\left(\xi^{(m+1)}, \ldots, \xi^{(n)}\right)$ and forget about them.
3. For all roots we know including intervals

$$
X^{(0, i)}=\left[x_{1}^{(0, i)}, x_{2}^{(0, i)}\right], \quad 1 \leq i \leq m .
$$

4. Including intervals are pairwise disjoint:

$$
X^{(0, i)} \cap X^{(0, j)}=\emptyset, \quad 1 \leq i<j \leq m .
$$

We consider the equivalent polynomial Q where every root has multiplicity 1 :

$$
Q(x)=\frac{P(x)}{G C D\left(P(x), P^{\prime}(x)\right)}=\prod_{j=1}^{m}\left(x-\xi^{(i)}\right) .
$$

Extracting $\left(x-\xi^{(i)}\right)$ leads to

$$
\xi^{(i)}=x-Q(x) / \prod_{j=1, j \neq i}^{m}\left(x-\xi^{(j)}\right) .
$$

If we choose $x=x^{(0, i)} \in X^{(0, i)}$, we have $\xi^{(i)} \in$
$X^{(1, i)}:=\left\{x^{(0, i)}-\frac{Q\left(x^{(0, i)}\right)}{\prod_{j=1, j \neq i}^{m}\left(x^{(0, i)}-X^{(0, j)}\right)}\right\} \cap X^{(0, i)}$
... and the following total step iteration scheme:

$$
\begin{aligned}
X^{(k+1, i)} & :=\left\{x^{(k, i)}-Q\left(x^{(k, i)}\right) / B^{(k, i)}\right\} \cap X^{(k, i)} \\
B^{(k, i)} & :=\prod_{j=1, j \neq i}^{m}\left(x^{(k, i)}-X^{(k, j)}\right) \\
x^{(k, i)} & \in \quad X^{(k, i)}, \quad 1 \leq i \leq m, \quad k \geq 0 .
\end{aligned}
$$

Improvements

Before computing $X^{(k+1, j)}, j \geq i$, we already know $X^{(k+1, j)}, j<i$. Therefore we can replace $B^{(k, i)}$ by
$C^{(k, i)}:=\prod_{j=1}^{i-1}\left(x^{(k, i)}-X^{(k+1, j)}\right) \cdot \prod_{j=i+1}^{m}\left(x^{(k, i)}-X^{(k, j)}\right)$.
to get a tighter denominator and the following single step iteration scheme:

Init: $\quad x^{(0, i)} \in X^{(0, i)}$
Step:

$$
\begin{aligned}
& X^{(k+1, i)}:=\left\{x^{(k, i)}-Q\left(x^{(k, i)}\right) / C^{(k, i)}\right\} \cap X^{(k, i)} \\
& C^{(k, i)}:=\prod_{j=1}^{i-1}\left(x^{(k, i)}-X^{(k+1, j)}\right) \cdot \prod_{j=i+1}^{m}\left(x^{(k, i)}-X^{(k, j)}\right), \\
& x^{(k+1, i)} \in X^{(k+1, i)}, \quad 1 \leq i \leq m, \quad k \geq 0 .
\end{aligned}
$$

Heuristic: Choose $x^{(k, i)}=\frac{1}{2}\left(x_{1}^{(k, i)}+x_{2}^{(k, i)}\right)$

Conclusions

- Advantages

- Simultaneous determination of polynomial roots.
- Reliable information about root location.
- Always converging under the assumptions made above.
- Early sign prediction of roots possible.
- Convergence order ≥ 2 for the total step method and >2 in the case of the single step method.
- Disadvantages
- Interval arithmetic is expensive.
- All roots of the polynomial have to be real.

Simultaneous Inclusion of Complex Roots

Assumption

We are using circular regions as complex intervals.

The following relationship between P and P^{\prime} :

$$
\begin{aligned}
Q(z)=\frac{P^{\prime}(z)}{P(z)} & =\frac{\sum_{i=1}^{m} \prod_{j=1, j \neq i}^{m}\left(z-\xi^{(j)}\right)}{\prod_{j=1}^{m}\left(z-\xi^{(j)}\right)} \\
& =\sum_{i=1}^{m} \frac{1}{z-\xi^{(i)}}
\end{aligned}
$$

let us write $\xi^{(i)}$ as follows:

$$
\begin{aligned}
\xi^{(i)} & =z-\left(z-\xi^{(i)}\right)=z-\frac{1}{\frac{1}{z-\xi^{(i)}}} \\
& =z-\frac{1}{Q(z)-\sum_{j=1, j \neq i}^{m} \frac{1}{z-\xi^{(j)}}} .
\end{aligned}
$$

This leads to the following total step iteration scheme:

$$
\begin{aligned}
Z^{(k+1, i)}= & \left\langle z^{(k+1, i)}, r^{(k+1, i)}\right\rangle \\
= & z^{(k, i)}-\frac{1}{Q\left(z^{(k, i)}\right)-C^{(k, i)}} \\
z^{(k, i)}= & m\left(Z^{(k, i)}\right) \\
Q\left(z^{(k, i)}\right)= & \frac{P^{\prime}\left(z^{(k, i)}\right)}{P\left(z^{(k, i)}\right)} \quad \text { for } P\left(z^{(k, i)}\right) \neq 0 \\
C^{(k, i)}= & \sum_{j=1, j \neq i}^{m} \frac{1}{z^{(k, i)}-Z^{(k, i)}} \\
& 1 \leq i \leq m, \quad k \geq 0
\end{aligned}
$$

Remark

- A single step method can be formulated as in the case of real roots.
- The convergence is at least third order.

