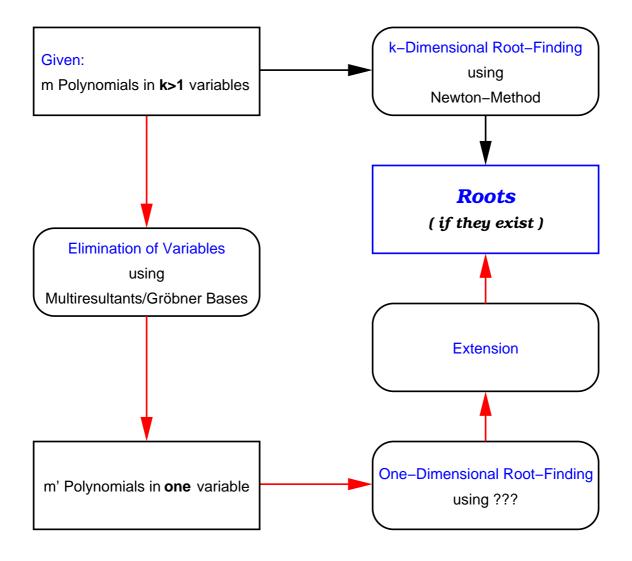
Finding Roots of Polynomials

Christian Lennerz

12th November 2002

Roots of Polynomials



Roots of Polynomials in One Variable

Definition

A polynomial P in one variable x with complex coefficients is a function, given by

$$P(x) = \sum_{i=0}^{n} a_i x^i \,,$$

where a_0, \ldots, a_n are complex numbers with $a_n \neq 0$.

Observation

In general a the roots can be real or complex, single or multiple...

Theorem 1

If all coefficients of *P* are real numbers, then the complex roots occur in pairs that are conjugate and both roots have the same multiplicity.

Finding Roots by Polynomial Deflation

Theorem 2

Every polynomial P of degree n with complex coefficients and $a_n \neq 0$ has the following product representation:

$$P(x) = a_n(x - \xi_1)(x - \xi_2) \cdots (x - \xi_n),$$

where ξ_1, \ldots, ξ_n are the roots of *P*.

Idea (Successive Deflation of P)

Given a root ξ_i of P, $1 \le i \le n$, the polynomial can be factored into the following product:

$$P(x) = (x - \xi_i)Q(x).$$

Then the following properties hold:

- 1. The reduced polynomial Q has degree one less than P.
- 2. The roots of Q are exactly the remaining roots of P.

Remarks

- Deflation is simply polynomial division.
- The effort of finding a root hopefully decreases in each step.
- The method cannot converge twice to the same non multiple root.
- Roots become more and more inaccurate, when not polished up.
- Successive Deflation is numerical stable, if the root of smallest absolute value is divided out in each step.
- In our context, we don't need complex arithmetics:

 $[x - (a + bi)] \cdot [x - (a - bi)] = x^2 - 2ax + a^2 + b^2 \in \mathbb{R}.$

Bracketing

Definition

A root is bracketed in the interval (a, b) if f(a) and f(b) have different signs.

Motivation

According to the Intermediate Value Theorem there must be at least one root in (a, b), unless a singularity is present.

Remark

With standard arithmetic there is no sure way of bracketing all roots of an arbitrary function:

$$f(x) = 3x^2 + \frac{1}{\pi^4} \ln[(\pi - x)^2] + 1$$

dips below zero only in the interval $\pi \pm 10^{-667}$.

Bisection

Idea

- Precondition: A bracketed range is given as starting point.
- Evaluate the function at the midpoint of the interval and examine its sign.
- Use the midpoint to replace whichever limit has the same sign.

Remarks

- The method converges linearly because the width of the bracketed range decreases by a factor of two after each iteration.
- If the interval contains two or more roots, the method will find only one of them.
- The method does not distinguish singularities from roots.

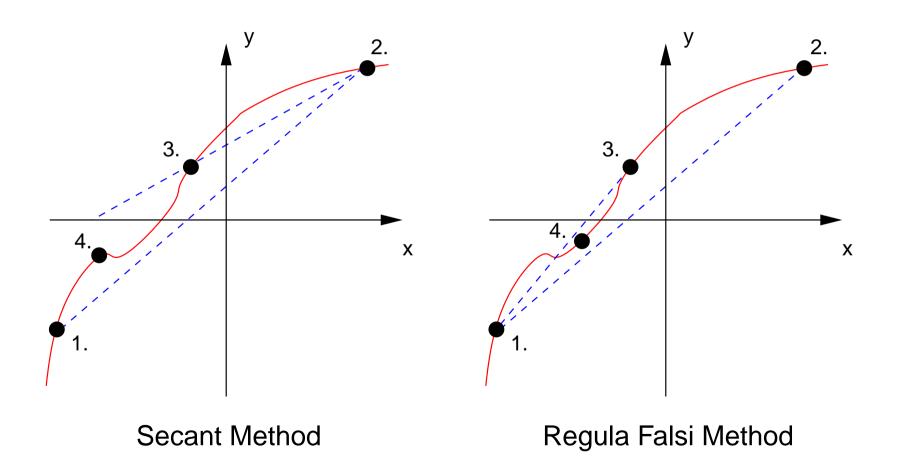
Regula Falsi and Secant Method

Assumption

The function is approximately linear in the local region of interest.

Idea

- Evaluate the function at the point where the line through both interval limits crosses the axis.
- Secant Method: Retain the most recent of the prior estimates and replace the other by the new estimate.
- Regula Falsi Method: Retain the prior estimate for which the function value has opposite sign from the current estimate of the root.



Conclusions

- Secant Method:
 - The root does not always remain bracketed. There is no convergence guaranty.
 - Near the root of a sufficient continous function the convergence order is the "golden ratio" 1.618....
- Regula Falsi Method:
 - Convergence can be guaranteed since the root remains bracketed.
 - Convergence order is lower as in the case of the Secant Method.

Improvements

- RIDDER's Method: Variant of the Regula Falsi Method that uses exponential instead of linear interpolation.
- BRENT's Method: Combines Secant Method, Bisection and quadratic interpolation.
- MULLER's Method: Generalization of the Secant Method using quadratic interpolation.

LAGUERRE's Method

Main Idea

- The root ξ_1 that we seek is assumed to be some distance *a* from a our current guess $\hat{\xi}_1$.
- All other roots are assumed to be located at a distance *b*.
- Use the polynomial P, P', P'' to solve for a, then take $\hat{\xi}_1 a$ as the next guess.
- Continue this process until *a* becomes small enough.

Some Details

Remember the following relations between P and its derivatives:

$$P(x) = \prod_{i=1}^{n} (x - \xi_i)$$

$$Q(x) := \frac{P'(x)}{P(x)} = \sum_{i=1}^{n} \frac{1}{x - \xi_i}$$

$$R(x) := \left[\frac{P'(x)}{P(x)}\right]^2 - \frac{P''(x)}{P(x)} = \sum_{i=1}^{n} \frac{1}{(x - \xi_i)^2}$$

Using our "rather drastic set of assumptions"

$$\xi_1 = \hat{\xi}_1 - a, \qquad \xi_i = \hat{\xi}_1 - b, \quad 2 \le i \le n.$$

we obtain for $Q(\hat{\xi}_1)$ and $R(\hat{\xi}_1)$:

$$Q(\hat{\xi}_1) = \frac{1}{a} + \frac{n-1}{b}$$
 $R(\hat{\xi}_1) = \frac{1}{a^2} + \frac{n-1}{b^2}.$

Solving for a leads to:

$$a = \frac{n}{Q(\hat{\xi}_1) \pm \sqrt{(n-1)(nR(\hat{\xi}_1) - Q(\hat{\xi}_1)^2)}}$$

Remarks

- There are two possibilities for *a*. Take the sign, such that *a* is minimal.
- For polynomials with all real roots the method is guaranteed to converge to a root for any starting point.
- For polynomials with some complex roots convergence cannot be guaranteed.
- When the method converges to a simple complex root the convergence is third order.
- The method requires complex arithmetic, even while converging to real roots.

Eigenvalue Methods

Facts

• The eigenvalues of a matrix A are the roots of the characteristic polynomial

$$Q_A(x) = \det(A - xI).$$

• There are efficient and numerical stable non-root-finding methods to compute the eigenvalues of a matrix.

Question

Is it possible to reduce the polynomial root-finding problem to the problem of computing the eigenvalues of a matrix ?

Answer

The characteristic polynomial of the following companion matrix

$$A = \begin{pmatrix} -\frac{a_{n-1}}{a_n} & -\frac{a_{n-2}}{a_n} & \cdots & -\frac{a_1}{a_n} & -\frac{a_0}{a_n} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

has the same roots as the polynomial

$$P(x) = \sum_{i=0}^{n} a_i x^i.$$

Proof

Expansion by the first row gives us

$$Q_A(x) = \det(A - xI) = (-1)^n \sum_{i=0}^n \frac{a_i}{a_n} x^i.$$

Remarks

- The eigenvalues can be computed using the QR-Algorithm, an efficient eigenvalue method when the input is an upper Hessenberg matrix.
- Advantage: More robust technique than LAGUERRE's Method.
- Disadvantage: Typically a factor 2 slower than LAGUERRE's Method.

Simultaneous Inclusion of Real Roots

Given:
$$P(x) = \sum_{i=0}^{n} a_i x^i, \quad a_n = 1$$

Assumptions

- 1. *P* has *n* real roots $\xi = (\xi^{(1)}, \dots, \xi^{(n)})$, where multiple roots are entered according to their multiplicity.
- 2. We collect multiple roots as $(\xi^{(m+1)}, \dots, \xi^{(n)})$ and forget about them.
- 3. For all roots we know including intervals

 $X^{(0,i)} = [x_1^{(0,i)}, x_2^{(0,i)}], \quad 1 \le i \le m.$

4. Including intervals are pairwise disjoint:

$$X^{(0,i)} \cap X^{(0,j)} = \emptyset, \quad 1 \le i < j \le m.$$

We consider the equivalent polynomial Q where every root has multiplicity 1:

$$Q(x) = \frac{P(x)}{GCD(P(x), P'(x))} = \prod_{j=1}^{m} (x - \xi^{(i)}).$$

Extracting $(x - \xi^{(i)})$ leads to

$$\xi^{(i)} = x - Q(x) / \prod_{j=1, j \neq i}^{m} (x - \xi^{(j)}).$$

If we choose $x=x^{(0,i)}\in X^{(0,i)},$ we have $\xi^{(i)}\in$

$$X^{(1,i)} := \left\{ x^{(0,i)} - \frac{Q(x^{(0,i)})}{\prod_{j=1, j \neq i}^{m} (x^{(0,i)} - X^{(0,j)})} \right\} \cap X^{(0,i)}$$

... and the following total step iteration scheme:

$$\begin{aligned} X^{(k+1,i)} &:= \left\{ x^{(k,i)} - Q(x^{(k,i)}) / B^{(k,i)} \right\} \cap X^{(k,i)} \\ B^{(k,i)} &:= \prod_{j=1, j \neq i}^{m} (x^{(k,i)} - X^{(k,j)}) \\ x^{(k,i)} &\in X^{(k,i)}, \quad 1 \le i \le m, \quad k \ge 0. \end{aligned}$$

Improvements

Before computing $X^{(k+1,j)}$, $j \ge i$, we already know $X^{(k+1,j)}$, j < i. Therefore we can replace $B^{(k,i)}$ by

$$C^{(k,i)} := \prod_{j=1}^{i-1} (x^{(k,i)} - X^{(k+1,j)}) \cdot \prod_{j=i+1}^{m} (x^{(k,i)} - X^{(k,j)}).$$

to get a tighter denominator and the following single step iteration scheme:

Init: $x^{(0,i)} \in X^{(0,i)}$ Step:

$$X^{(k+1,i)} := \left\{ x^{(k,i)} - Q(x^{(k,i)}) / C^{(k,i)} \right\} \cap X^{(k,i)}$$
$$C^{(k,i)} := \prod_{j=1}^{i-1} (x^{(k,i)} - X^{(k+1,j)}) \cdot \prod_{j=i+1}^{m} (x^{(k,i)} - X^{(k,j)}),$$
$$x^{(k+1,i)} \in X^{(k+1,i)}, \quad 1 \le i \le m, \quad k \ge 0.$$

Heuristic: Choose $x^{(k,i)} = \frac{1}{2}(x_1^{(k,i)} + x_2^{(k,i)})$

Conclusions

• Advantages

- Simultaneous determination of polynomial roots.
- Reliable information about root location.
- Always converging under the assumptions made above.
- Early sign prediction of roots possible.
- Convergence order ≥ 2 for the total step method and > 2 in the case of the single step method.
- Disadvantages
 - Interval arithmetic is expensive.
 - All roots of the polynomial have to be real.

Simultaneous Inclusion of Complex Roots

Assumption

We are using circular regions as complex intervals.

The following relationship between P and P':

$$Q(z) = \frac{P'(z)}{P(z)} = \frac{\sum_{i=1}^{m} \prod_{\substack{j=1, j\neq i}}^{m} (z - \xi^{(j)})}{\prod_{j=1}^{m} (z - \xi^{(j)})}$$
$$= \sum_{i=1}^{m} \frac{1}{z - \xi^{(i)}}$$

let us write $\xi^{(i)}$ as follows:

$$\xi^{(i)} = z - (z - \xi^{(i)}) = z - \frac{1}{\frac{1}{z - \xi^{(i)}}}$$
$$= z - \frac{1}{Q(z) - \sum_{j=1, j \neq i}^{m} \frac{1}{z - \xi^{(j)}}}.$$

This leads to the following total step iteration scheme:

$$Z^{(k+1,i)} = \langle z^{(k+1,i)}, r^{(k+1,i)} \rangle$$

= $z^{(k,i)} - \frac{1}{Q(z^{(k,i)}) - C^{(k,i)}}$
 $z^{(k,i)} = m(Z^{(k,i)}),$
 $Q(z^{(k,i)}) = \frac{P'(z^{(k,i)})}{P(z^{(k,i)})} \text{ for } P(z^{(k,i)}) \neq 0,$
 $C^{(k,i)} = \sum_{j=1, j \neq i}^{m} \frac{1}{z^{(k,i)} - Z^{(k,i)}},$
 $1 \le i \le m, \quad k \ge 0.$

Remark

- A single step method can be formulated as in the case of real roots.
- The convergence is at least third order.